↓ Skip to main content

Rare variant density across the genome and across populations

Overview of attention for article published in BMC Proceedings, November 2011
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rare variant density across the genome and across populations
Published in
BMC Proceedings, November 2011
DOI 10.1186/1753-6561-5-s9-s39
Pubmed ID
Authors

Paola Raska, Xiaofeng Zhu

Abstract

Next-generation sequencing allows for a new focus on rare variant density for conducting analyses of association to disease and for narrowing down the genomic regions that show evidence of functionality. In this study we use the 1000 Genomes Project pilot data as distributed by Genetic Analysis Workshop 17 to compare rare variant densities across seven populations. We made the comparisons using regressions of rare variants on total variant counts per gene for each population and Tajima's D values calculated for each gene in each population, using data on 3,205 genes. We found that the populations clustered by continent for both the regression slopes and Tajima's D values, with the African populations (Yoruba and Luhya) showing the highest density of rare variants, followed by the Asian populations (Han and Denver Chinese followed by the Japanese) and the European populations (CEPH [European-descent] and Tuscan) with the lowest densities. These significant differences in rare variant densities across populations seem to translate to measures of the rare variant density more commonly used in rare variant association analyses, suggesting the need to adjust for ancestry in such analyses. The selection signal was high for AHNAK, HLA-A, RANBP2, and RGPD4, among others. RANBP2 and RGPD4 showed a marked difference in rare variant density and potential selection between the Luhya and the other populations. This may suggest that differences between populations should be considered when delimiting genomic regions according to functionality and that these differences can create potential for disease heterogeneity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 4%
United States 1 4%
Italy 1 4%
Unknown 21 88%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 25%
Student > Ph. D. Student 5 21%
Student > Master 5 21%
Professor > Associate Professor 3 13%
Student > Bachelor 2 8%
Other 3 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 54%
Biochemistry, Genetics and Molecular Biology 5 21%
Mathematics 2 8%
Medicine and Dentistry 2 8%
Energy 1 4%
Other 2 8%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 March 2012.
All research outputs
#18,304,874
of 22,663,150 outputs
Outputs from BMC Proceedings
#265
of 374 outputs
Outputs of similar age
#195,931
of 240,156 outputs
Outputs of similar age from BMC Proceedings
#23
of 44 outputs
Altmetric has tracked 22,663,150 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 374 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 240,156 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.