↓ Skip to main content

Disrupted ADP-ribose metabolism with nuclear Poly (ADP-ribose) accumulation leads to different cell death pathways in presence of hydrogen peroxide in procyclic Trypanosoma brucei

Overview of attention for article published in Parasites & Vectors, March 2016
Altmetric Badge

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Disrupted ADP-ribose metabolism with nuclear Poly (ADP-ribose) accumulation leads to different cell death pathways in presence of hydrogen peroxide in procyclic Trypanosoma brucei
Published in
Parasites & Vectors, March 2016
DOI 10.1186/s13071-016-1461-1
Pubmed ID
Authors

Mariana Schlesinger, Salomé C. Vilchez Larrea, Teemu Haikarainen, Mohit Narwal, Harikanth Venkannagari, Mirtha M. Flawiá, Lari Lehtiö, Silvia H. Fernández Villamil

Abstract

Poly(ADP-ribose) (PAR) metabolism participates in several biological processes such as DNA damage signaling and repair, which is a thoroughly studied function. PAR is synthesized by Poly(ADP-ribose) polymerase (PARP) and hydrolyzed by Poly(ADP-ribose) glycohydrolase (PARG). In contrast to human and other higher eukaryotes, Trypanosoma brucei contains only one PARP and PARG. Up to date, the function of these enzymes has remained elusive in this parasite. The aim of this work is to unravel the role that PAR plays in genotoxic stress response. The optimal conditions for the activity of purified recombinant TbPARP were determined by using a fluorometric activity assay followed by screening of PARP inhibitors. Sensitivity to a genotoxic agent, H2O2, was assessed by counting motile parasites over the total number in a Neubauer chamber, in presence of a potent PARP inhibitor as well as in procyclic transgenic lines which either down-regulate PARP or PARG, or over-express PARP. Triplicates were carried out for each condition tested and data significance was assessed with two-way Anova followed by Bonferroni test. Finally, PAR influence was studied in cell death pathways by flow cytometry. Abolition of a functional PARP either by using potent inhibitors present or in PARP-silenced parasites had no effect on parasite growth in culture; however, PARP-inhibited and PARP down-regulated parasites presented an increased resistance against H2O2 treatment when compared to their wild type counterparts. PARP over-expressing and PARG-silenced parasites displayed polymer accumulation in the nucleus and, as expected, showed diminished resistance when exposed to the same genotoxic stimulus. Indeed, they suffered a necrotic death pathway, while an apoptosis-like mechanism was observed in control cultures. Surprisingly, PARP migrated to the nucleus and synthesized PAR only after a genomic stress in wild type parasites while PARG occurred always in this organelle. PARP over-expressing and PARG-silenced cells presented PAR accumulation in the nucleus, even in absence of oxidative stress. Procyclic death pathway after genotoxic damage depends on basal nuclear PAR. This evidence demonstrates that the polymer may have a toxic action by itself since the consequences of an exacerbated PARP activity cannot fully explain the increment in sensitivity observed here. Moreover, the unusual localization of PARP and PARG would reveal a novel regulatory mechanism, making them invaluable model systems.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 17%
Researcher 4 17%
Student > Bachelor 3 13%
Student > Master 3 13%
Student > Doctoral Student 2 8%
Other 1 4%
Unknown 7 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 33%
Agricultural and Biological Sciences 5 21%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Business, Management and Accounting 1 4%
Chemistry 1 4%
Other 0 0%
Unknown 8 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 April 2016.
All research outputs
#18,449,393
of 22,858,915 outputs
Outputs from Parasites & Vectors
#4,231
of 5,470 outputs
Outputs of similar age
#220,014
of 300,567 outputs
Outputs of similar age from Parasites & Vectors
#135
of 166 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,470 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,567 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 166 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.