↓ Skip to main content

Survival and immune response of the Chagas vector Meccus pallidipennis (Hemiptera: Reduviidae) against two entomopathogenic fungi, Metarhizium anisopliae and Isaria fumosorosea

Overview of attention for article published in Parasites & Vectors, March 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
4 X users
facebook
3 Facebook pages

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Survival and immune response of the Chagas vector Meccus pallidipennis (Hemiptera: Reduviidae) against two entomopathogenic fungi, Metarhizium anisopliae and Isaria fumosorosea
Published in
Parasites & Vectors, March 2016
DOI 10.1186/s13071-016-1453-1
Pubmed ID
Authors

A. Laura Flores-Villegas, Margarita Cabrera-Bravo, Conchita Toriello, Martha I. Bucio-Torres, Paz María Salazar-Schettino, Alex Córdoba-Aguilar

Abstract

Chagas disease is a key health problem in Latin America and is caused and transmitted by Trypanosoma cruzi and triatomine bugs, respectively. Control of triatomines has largely relied on the use pyrethroids, which has proved to be ineffective in the long term. Alternatively, the use of entomopathogenic fungi has been implemented to control triatomine bugs. These fungi are highly efficient as they induce a reduction in immune response on insects. Meccus pallidipennis is the main triatomine vector of Chagas disease in Mexico. In this work we investigated the effects of two entomopathogenic fungi, Metarhizium anisopliae and Isaria fumosorosea, on M. pallidipennis nymphs in terms of insect survival and immune response. We had an infected and a control group for each fungal species and assessed: a) insect survival during 30 days; and, b) phenoloxidase (PO) and prophenoloxidase (proPO; two key traits in insect immune response) at 24, 48, 96 and 144 h. For survival we used Kaplan-Meier survival analysis while for immune response we used factorial, repeated-measures ANOVA for each fungal species. Animals treated with M. anisopliae died sooner than animals treated with I. fumosorosea. Infected animals showed lower PO and proPO values than sham individuals, with a clear decrease in these parameters at 24 h with no further changes after this time. Our study widens the possibility of entomopathogenic fungi being used for triatomine control. The negative effect on PO and proPO seems mediated by a down-regulation of the triatomine immune response.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 70 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 15 21%
Student > Master 9 13%
Researcher 6 9%
Student > Doctoral Student 5 7%
Student > Ph. D. Student 5 7%
Other 13 19%
Unknown 17 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 23%
Medicine and Dentistry 11 16%
Biochemistry, Genetics and Molecular Biology 9 13%
Immunology and Microbiology 6 9%
Environmental Science 2 3%
Other 7 10%
Unknown 19 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 April 2017.
All research outputs
#7,420,543
of 22,858,915 outputs
Outputs from Parasites & Vectors
#1,831
of 5,470 outputs
Outputs of similar age
#106,684
of 300,490 outputs
Outputs of similar age from Parasites & Vectors
#48
of 166 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 5,470 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,490 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 166 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.