↓ Skip to main content

Neuroanatomical features in soldiers with post-traumatic stress disorder

Overview of attention for article published in BMC Neuroscience, March 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

blogs
1 blog
twitter
5 X users
facebook
1 Facebook page

Readers on

mendeley
125 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neuroanatomical features in soldiers with post-traumatic stress disorder
Published in
BMC Neuroscience, March 2016
DOI 10.1186/s12868-016-0247-x
Pubmed ID
Authors

D. Sussman, E. W. Pang, R. Jetly, B. T. Dunkley, M. J. Taylor

Abstract

Posttraumatic stress disorder (PTSD), an anxiety disorder that can develop after exposure to psychological trauma, impacts up to 20 % of soldiers returning from combat-related deployment. Advanced neuroimaging holds diagnostic and prognostic potential for furthering our understanding of its etiology. Previous imaging studies on combat-related PTSD have focused on selected structures, such as the hippocampi and cortex, but none conducted a comprehensive examination of both the cerebrum and cerebellum. The present study provides a complete analysis of cortical, subcortical, and cerebellar anatomy in a single cohort. Forty-seven magnetic resonance images (MRIs) were collected from 24 soldiers with PTSD and 23 Control soldiers. Each image was segmented into 78 cortical brain regions and 81,924 vertices using the corticometric iterative vertex based estimation of thickness algorithm, allowing for both a region-based and a vertex-based cortical analysis, respectively. Subcortical volumetric analyses of the hippocampi, cerebellum, thalamus, globus pallidus, caudate, putamen, and many sub-regions were conducted following their segmentation using Multiple Automatically Generated Templates Brain algorithm. Participants with PTSD were found to have reduced cortical thickness, primarily in the frontal and temporal lobes, with no preference for laterality. The region-based analyses further revealed localized thinning as well as thickening in several sub-regions. These results were accompanied by decreased volumes of the caudate and right hippocampus, as computed relative to total cerebral volume. Enlargement in several cerebellar lobules (relative to total cerebellar volume) was also observed in the PTSD group. These data highlight the distributed structural differences between soldiers with and without PTSD, and emphasize the diagnostic potential of high-resolution MRI.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 125 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 125 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 22 18%
Student > Bachelor 21 17%
Student > Ph. D. Student 19 15%
Researcher 15 12%
Student > Postgraduate 7 6%
Other 20 16%
Unknown 21 17%
Readers by discipline Count As %
Psychology 30 24%
Neuroscience 26 21%
Medicine and Dentistry 21 17%
Biochemistry, Genetics and Molecular Biology 6 5%
Nursing and Health Professions 4 3%
Other 9 7%
Unknown 29 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 April 2017.
All research outputs
#2,589,848
of 23,881,329 outputs
Outputs from BMC Neuroscience
#87
of 1,265 outputs
Outputs of similar age
#42,958
of 303,457 outputs
Outputs of similar age from BMC Neuroscience
#1
of 7 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,265 research outputs from this source. They receive a mean Attention Score of 4.5. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 303,457 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them