↓ Skip to main content

Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus

Overview of attention for article published in BMC Genomics, March 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus
Published in
BMC Genomics, March 2016
DOI 10.1186/s12864-016-2581-x
Pubmed ID
Authors

Soren Impey, Carl Pelz, Amanuel Tafessu, Tessa Marzulla, Mitchell S. Turker, Jacob Raber

Abstract

Proton irradiation poses a potential hazard to astronauts during and following a mission, with post-mitotic cells at most risk because they cannot dilute resultant epigenetic changes via cell division. Persistent epigenetic changes that result from environmental exposures include gains or losses of DNA methylation of cytosine, which can impact gene expression. In the present study, we compared the long-term epigenetic effects of whole body proton irradiation in the mouse hippocampus and left ventricle. We used an unbiased genome-wide DNA methylation study, involving ChIP-seq with antibodies to 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) to identify DNA regions in which methylation levels have changed 22 weeks after a single exposure to proton irradiation. We used DIP-Seq to profile changes in genome-wide DNA methylation and hydroxymethylation following proton irradiation. In addition, we used published RNAseq data to assess whether differentially methylated regions were linked to changes in gene expression. The DNA methylation data showed tissue-dependent effects of proton irradiation and revealed significant major pathway changes in response to irradiation that are related to known pathophysiologic processes. Many regions affected in the ventricle mapped to genes involved in cardiovascular function pathways, whereas many regions affected in the hippocampus mapped to genes involved in neuronal functions. In the ventricle, increases in 5hmC were associated with decreases in 5mC. We also observed spatial overlap for regions where both epigenetic marks decreased in the ventricle. In hippocampus, increases in 5hmC were most significantly correlated (spatially) with regions that had increased 5mC, suggesting that deposition of hippocampal 5mC and 5hmC may be mechanistically coupled. The results demonstrate long-term changes in DNA methylation patterns following a single proton irradiation, that these changes are tissue specific, and that they map to pathways consistent with tissue specific responses to proton irradiation. Further, the results suggest novel relationships between changes in 5mC and 5hmC.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 26%
Researcher 7 18%
Other 6 16%
Student > Doctoral Student 3 8%
Student > Master 2 5%
Other 3 8%
Unknown 7 18%
Readers by discipline Count As %
Medicine and Dentistry 10 26%
Biochemistry, Genetics and Molecular Biology 6 16%
Agricultural and Biological Sciences 3 8%
Neuroscience 3 8%
Mathematics 1 3%
Other 6 16%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 April 2016.
All research outputs
#14,181,984
of 24,716,872 outputs
Outputs from BMC Genomics
#4,838
of 11,052 outputs
Outputs of similar age
#144,223
of 306,469 outputs
Outputs of similar age from BMC Genomics
#93
of 228 outputs
Altmetric has tracked 24,716,872 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,052 research outputs from this source. They receive a mean Attention Score of 4.8. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 306,469 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 228 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.