↓ Skip to main content

Enhanced preferential cytotoxicity through surface modification: synthesis, characterization and comparative in vitro evaluation of TritonX-100 modified and unmodified zinc oxide nanoparticles in…

Overview of attention for article published in BMC Chemistry, April 2016
Altmetric Badge

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Enhanced preferential cytotoxicity through surface modification: synthesis, characterization and comparative in vitro evaluation of TritonX-100 modified and unmodified zinc oxide nanoparticles in human breast cancer cell (MDA-MB-231)
Published in
BMC Chemistry, April 2016
DOI 10.1186/s13065-016-0162-3
Pubmed ID
Authors

Biplab KC, Siddhi Nath Paudel, Sagar Rayamajhi, Deepak Karna, Sandeep Adhikari, Bhupal G. Shrestha, Gunjan Bisht

Abstract

Nanoparticles (NPs) are receiving increasing interest in biomedical research owing to their comparable size with biomolecules, novel properties and easy surface engineering for targeted therapy, drug delivery and selective treatment making them a better substituent against traditional therapeutic agents. ZnO NPs, despite other applications, also show selective anticancer property which makes it good option over other metal oxide NPs. ZnO NPs were synthesized by chemical precipitation technique, and then surface modified using Triton X-100. Comparative study of cytotoxicity of these modified and unmodified NPs on breast cancer cell line (MDA-MB-231) and normal cell line (NIH 3T3) were carried out. ZnO NPsof average size 18.67 ± 2.2 nm and Triton-X modified ZnO NPs of size 13.45 ± 1.42 nm were synthesized and successful characterization of synthesized NPs was done by Fourier transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), transmission electron microscopy (TEM) analysis. Surface modification of NPs was proved by FT-IR analysis whereas structure and size by XRD analysis. Morphological analysis was done by TEM. Cell viability assay showed concentration dependent cytotoxicity of ZnO NPs in breast cancer cell line (MDA-MB-231) whereas no positive correlation was found between cytotoxicity and increasing concentration of stress in normal cell line (NIH 3T3) within given concentration range. Half maximum effective concentration (EC50) value for ZnO NPs was found to be 38.44 µg/ml and that of modified ZnO NPs to be 55.24 µg/ml for MDA-MB-231. Crystal violet (CV) staining image showed reduction in number of viable cells in NPs treated cell lines further supporting this result. DNA fragmentation assay showed fragmented bands indicating that the mechanism of cytotoxicity is through apoptosis. Although use of surfactant decreases particle size, toxicity of modified ZnO NPs were still less than unmodified NPs on MDA-MB-231 contributed by biocompatible surface coating. Both samples show significantly less toxicity towards NIH 3T3 in concentration independent manner. But use of Triton-X, a biocompatible polymer, enhances this preferentiality effect. Since therapeutic significance should be analyzed through its comparative effect on both normal and cancer cells, possible application of biocompatible polymer modified nanoparticles as therapeutic agent holds better promise.Graphical abstractSurface coating, characterization and comparative in vitro cytotoxicity study on MDA-MB 231 and NIH 3T3 of ZnO NPs showing enhanced preferentiality by biocompatible surface modification.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 16%
Student > Ph. D. Student 6 16%
Student > Bachelor 5 13%
Student > Doctoral Student 4 11%
Student > Postgraduate 3 8%
Other 7 18%
Unknown 7 18%
Readers by discipline Count As %
Chemistry 6 16%
Agricultural and Biological Sciences 6 16%
Biochemistry, Genetics and Molecular Biology 6 16%
Materials Science 3 8%
Medicine and Dentistry 2 5%
Other 6 16%
Unknown 9 24%