↓ Skip to main content

Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism

Overview of attention for article published in Molecular Cancer, April 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
2 X users
patent
1 patent

Readers on

mendeley
135 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism
Published in
Molecular Cancer, April 2016
DOI 10.1186/s12943-016-0512-8
Pubmed ID
Authors

Mayakannan Manikandan, Arungiri Kuha Deva Magendhra Rao, Ganesan Arunkumar, Meenakshisundaram Manickavasagam, Kottayasamy Seenivasagam Rajkumar, Ramamurthy Rajaraman, Arasambattu Kannan Munirajan

Abstract

The advantages and utility of microRNAs (miRNAs) as diagnostic and prognostic cancer markers is at the vanguard in recent years. In this study, we attempted to identify and validate the differential expression of miRNAs in oral squamous cell carcinoma (OSCC), to correlate their expression with the clinico-pathological profile of tumours and to identify the signaling pathways through which the aberrantly expressed miRNAs effect tumourigenesis. miRCURY LNA™ array with probes specific to 1168 miRNAs and TaqMan assays specific for 10 miRNAs was employed to evaluate and validate miRNA expression in a discovery cohort (n = 29) and validation cohort (n = 61) of primary OSCC tissue specimens, respectively. A computational pipeline with sequential integration of data from miRTarBase, CytoScape, UniProtKB and DIANA-miRPath was utilized to map the target genes of deregulated miRNAs and associated molecular pathways. Microarray profiling identified 46 miRNAs that were differentially expressed in OSCC. Unsupervised clustering demonstrated a high degree of molecular heterogeneity across the tumour samples as the clusters did not represent any of their clinico-pathological characteristics. The differential expression of 10 miRNAs were validated by RT-qPCR (let-7a, let-7d, let-7f and miR-16 were downregulated while miR-29b, miR-142-3p, miR-144, miR-203, and miR-223 were upregulated in OSCC; the expression of miR-1275 was variable in tumours, with high levels associated to regional lymph node invasion; additionally, miR-223 exhibited an association with advanced tumour stage/size). In silico analyses of the experimentally confirmed target genes of miRNAs revamp the relationship of upregulated miRNAs with tumour suppressor genes and of downregulated miRNAs with oncogenes. Further, the differentially expressed miRNAs may play a role by simultaneously activating genes of PI3K/Akt signaling on one hand and by repressing genes of p53 signaling pathway on the other. The identified differentially expressed miRNAs and signaling pathways deregulated in OSCC have implications for the development of novel therapeutic strategies. To the best of our knowledge, this is the first report to show the association of miR-1275 with nodal invasion and the upregulation of miR-144 in OSCC.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 135 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 135 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 15%
Student > Bachelor 19 14%
Student > Master 16 12%
Researcher 11 8%
Student > Postgraduate 9 7%
Other 24 18%
Unknown 36 27%
Readers by discipline Count As %
Medicine and Dentistry 37 27%
Biochemistry, Genetics and Molecular Biology 25 19%
Agricultural and Biological Sciences 11 8%
Pharmacology, Toxicology and Pharmaceutical Science 4 3%
Engineering 3 2%
Other 16 12%
Unknown 39 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 August 2020.
All research outputs
#6,808,508
of 22,860,626 outputs
Outputs from Molecular Cancer
#472
of 1,723 outputs
Outputs of similar age
#96,206
of 301,014 outputs
Outputs of similar age from Molecular Cancer
#3
of 23 outputs
Altmetric has tracked 22,860,626 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 1,723 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 301,014 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.