↓ Skip to main content

Identification and characterization of novel and conserved microRNAs in several tissues of the Chinese rare minnow (Gobiocypris rarus) based on illumina deep sequencing technology

Overview of attention for article published in BMC Genomics, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification and characterization of novel and conserved microRNAs in several tissues of the Chinese rare minnow (Gobiocypris rarus) based on illumina deep sequencing technology
Published in
BMC Genomics, April 2016
DOI 10.1186/s12864-016-2606-5
Pubmed ID
Authors

Xiangsheng Hong, Jianhui Qin, Rui Chen, Lilai Yuan, Jinmiao Zha, Zijian Wang

Abstract

MicroRNAs (miRNAs), which comprise a large family of endogenous small non-coding RNA molecules, play important roles in the regulation of gene expression in various biological processes. The Chinese rare minnow (Gobiocypris rarus) is a Chinese native fish species and is used extensively as an experimental fish in China; however, relevant biological data, especially miRNA transcriptome data, have not been well documented. To discover conserved and potential novel miRNAs in Chinese rare minnows, a pool of equal amounts of RNA obtained from 6 different adult rare minnow tissues (brain, eye, gill, liver, muscle and heart) was sequenced using illumina deep sequencing technology. In the present study, 26,930,553 raw reads, representing 2,118,439 unique high-quality reads, were obtained from the pooled small RNA library. Using bioinformatics analysis, 352 conserved and 112 novel Chinese rare minnow miRNAs were first discovered and characterized in this study. Moreover, we found extensive sequence variations (isomiRs) in rare minnow miRNAs, including internal miRNA isomiRs and terminal isomiRs at both the 5' and 3' ends and nucleotide variants. Six conserved and 4 novel miRNAs were selected and validated in 6 different adult rare minnow tissues using quantitative real-time PCR (qPCR). The results showed that miR-30a, miR-30b, and Novel-37 are ubiquitously expressed in a variety of tissues. miR-16a, miR-9, miR-125b, miR-34a, and Novel-69 were predominantly expressed in the brain. Novel-115 and Novel-7 were highly expressed in gills, but were relatively weakly expressed in other tissues. These results provided the expression patterns of miRNA genes in Chinese rare minnow. Finally, based on bioinformatics predictions, we mainly found that Novel-94 and Novel-1b-5p were simultaneously targeted to the 3'UTR of Dmrt1, which controls sex determination and/or sexual differentiation in a variety of metazoans at different sites. Novel-29b targeted the 3'UTR of Foxl2, which is involved in the maintenance of ovarian function and the transcriptional regulation of gonadal differentiation-related genes. Novel-62 and Novel-53 targeted the 3'UTR of ERbeta1 and ERbeta2 (which regulate the transcription of target genes), respectively. Rare minnow is a widely used model for assessing the risk of environmental pollution in China. Identifying and characterizing rare minnow miRNA genes is necessary to discover the biological function of miRNAs and to screen for new molecule biomarkers to assess the risk of environmental pollution in the future.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 24%
Professor 2 12%
Student > Master 2 12%
Researcher 2 12%
Student > Postgraduate 1 6%
Other 0 0%
Unknown 6 35%
Readers by discipline Count As %
Environmental Science 4 24%
Biochemistry, Genetics and Molecular Biology 4 24%
Agricultural and Biological Sciences 2 12%
Unknown 7 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 April 2016.
All research outputs
#14,667,531
of 24,598,501 outputs
Outputs from BMC Genomics
#5,295
of 11,013 outputs
Outputs of similar age
#153,141
of 306,299 outputs
Outputs of similar age from BMC Genomics
#130
of 257 outputs
Altmetric has tracked 24,598,501 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,013 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 306,299 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 257 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.