↓ Skip to main content

Comparative morphology and development of extra-ocular muscles in the lamprey and gnathostomes reveal the ancestral state and developmental patterns of the vertebrate head

Overview of attention for article published in Zoological Letters, April 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
17 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative morphology and development of extra-ocular muscles in the lamprey and gnathostomes reveal the ancestral state and developmental patterns of the vertebrate head
Published in
Zoological Letters, April 2016
DOI 10.1186/s40851-016-0046-3
Pubmed ID
Authors

Daichi G. Suzuki, Yuma Fukumoto, Miho Yoshimura, Yuji Yamazaki, Jun Kosaka, Shigeru Kuratani, Hiroshi Wada

Abstract

The ancestral configuration of the vertebrate head has long been an intriguing topic in comparative morphology and evolutionary biology. One peculiar component of the vertebrate head is the presence of extra-ocular muscles (EOMs), the developmental mechanism and evolution of which remain to be determined. The head mesoderm of elasmobranchs undergoes local epithelialization into three head cavities, precursors of the EOMs. In contrast, in avians, these muscles appear to develop mainly from the mesenchymal head mesoderm. Importantly, in the basal vertebrate lamprey, the head mesoderm does not show overt head cavities or signs of segmental boundaries, and the development of the EOMs is not well described. Furthermore, the disposition of the lamprey EOMs differs from those the rest of vertebrates, in which the morphological pattern of EOMs is strongly conserved. To better understand the evolution and developmental origins of the vertebrate EOMs, we explored the development of the head mesoderm and EOMs of the lamprey in detail. We found that the disposition of lamprey EOM primordia differed from that in gnathostomes, even during the earliest period of development. We also found that three components of the paraxial head mesoderm could be distinguished genetically (premandibular mesoderm: Gsc+/TbxA-; mandibular mesoderm: Gsc-/TbxA-; hyoid mesoderm: Gsc-/TbxA+), indicating that the genetic mechanisms of EOMs are conserved in all vertebrates. We conclude that the tripartite developmental origin of the EOMs is likely to have been possessed by the latest common ancestor of the vertebrates. This ancestor's EOM developmental pattern was also suggested to have resembled more that of the lamprey, and the gnathostome EOMs' disposition is likely to have been established by a secondary modification that took place in the common ancestor of crown gnathostomes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 17 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 27%
Student > Master 6 18%
Researcher 3 9%
Professor > Associate Professor 3 9%
Student > Bachelor 2 6%
Other 4 12%
Unknown 6 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 39%
Neuroscience 3 9%
Medicine and Dentistry 3 9%
Earth and Planetary Sciences 2 6%
Environmental Science 1 3%
Other 3 9%
Unknown 8 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 November 2016.
All research outputs
#4,527,799
of 25,376,589 outputs
Outputs from Zoological Letters
#68
of 184 outputs
Outputs of similar age
#65,970
of 315,447 outputs
Outputs of similar age from Zoological Letters
#5
of 7 outputs
Altmetric has tracked 25,376,589 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 184 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.0. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,447 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.