↓ Skip to main content

A novel method to characterize silica bodies in grasses

Overview of attention for article published in Plant Methods, January 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A novel method to characterize silica bodies in grasses
Published in
Plant Methods, January 2016
DOI 10.1186/s13007-016-0108-8
Pubmed ID
Authors

Clemon Dabney, Jason Ostergaard, Eric Watkins, Changbin Chen

Abstract

The deposition of silicon into epidermal cells of grass species is thought to be an important mechanism that plants use as a defense against pests and environmental stresses. There are a number of techniques available to study the size, density and distribution pattern of silica bodies in grass leaves. However, none of those techniques can provide a high-throughput analysis, especially for a great number of samples. We developed a method utilizing the autofluorescence of silica bodies to investigate their size and distribution, along with the number of carbon inclusions within the silica bodies of perennial grass species Koeleria macrantha. Fluorescence images were analyzed by image software Adobe Photoshop CS5 or ImageJ that remarkably facilitated the quantification of silica bodies in the dry ash. We observed three types of silica bodies or silica body related mineral structures. Silica bodies were detected on both abaxial and adaxial epidermis of K. macrantha leaves, although their sizes, density, and distribution patterns were different. No auto-fluorescence was detected from carbon inclusions. The combination of fluorescence microscopy and image processing software displayed efficient utilization in the identification and quantification of silica bodies in K. macrantha leaf tissues, which should applicable to biological, ecological and geological studies of grasses including forage, turf grasses and cereal crops.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 26%
Researcher 12 19%
Student > Master 8 13%
Student > Bachelor 7 11%
Other 3 5%
Other 5 8%
Unknown 11 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 48%
Computer Science 2 3%
Chemical Engineering 2 3%
Biochemistry, Genetics and Molecular Biology 2 3%
Earth and Planetary Sciences 2 3%
Other 7 11%
Unknown 17 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 November 2016.
All research outputs
#3,930,109
of 22,862,742 outputs
Outputs from Plant Methods
#210
of 1,083 outputs
Outputs of similar age
#68,842
of 394,833 outputs
Outputs of similar age from Plant Methods
#7
of 22 outputs
Altmetric has tracked 22,862,742 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,083 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 394,833 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.