↓ Skip to main content

Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response

Overview of attention for article published in BMC Plant Biology, April 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
5 X users
googleplus
1 Google+ user

Citations

dimensions_citation
66 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response
Published in
BMC Plant Biology, April 2016
DOI 10.1186/s12870-016-0773-9
Pubmed ID
Authors

Ajit Ghosh, Tahmina Islam

Abstract

Glyoxalase pathway consists of two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII) which detoxifies a highly cytotoxic metabolite methylglyoxal (MG) to its non-toxic form. MG may form advanced glycation end products with various cellular macro-molecules such as proteins, DNA and RNA; that ultimately lead to their inactivation. Role of glyoxalase enzymes has been extensively investigated in various plant species which showed their crucial role in salinity, drought and heavy metal stress tolerance. Previously genome-wide analysis of glyoxalase genes has been conducted in model plants Arabidopsis and rice, but no such study was performed in any legume species. In the present study, a comprehensive genome database analysis of soybean was performed and identified a total of putative 41 GLYI and 23 GLYII proteins encoded by 24 and 12 genes, respectively. Detailed analysis of these identified members was conducted including their nomenclature and classification, chromosomal distribution and duplication, exon-intron organization, and protein domain(s) and motifs identification. Expression profiling of these genes has been performed in different tissues and developmental stages as well as under salinity and drought stresses using publicly available RNAseq and microarray data. The study revealed that GmGLYI-7 and GmGLYII-8 have been expressed intensively in all the developmental stages and tissues; while GmGLYI-6, GmGLYI-9, GmGLYI-20, GmGLYII-5 and GmGLYII-10 were highly abiotic stress responsive members. The present study identifies the largest family of glyoxalase proteins to date with 41 GmGLYI and 23 GmGLYII members in soybean. Detailed analysis of GmGLYI and GmGLYII genes strongly indicates the genome-wide segmental and tandem duplication of the glyoxalase members. Moreover, this study provides a strong basis about the biological role and function of GmGLYI and GmGLYII members in soybean growth, development and stress physiology.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 16%
Student > Doctoral Student 7 14%
Student > Ph. D. Student 7 14%
Professor 4 8%
Student > Postgraduate 4 8%
Other 5 10%
Unknown 16 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 29%
Biochemistry, Genetics and Molecular Biology 12 24%
Computer Science 2 4%
Environmental Science 1 2%
Engineering 1 2%
Other 0 0%
Unknown 20 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 April 2016.
All research outputs
#12,758,628
of 22,862,742 outputs
Outputs from BMC Plant Biology
#829
of 3,260 outputs
Outputs of similar age
#121,658
of 269,982 outputs
Outputs of similar age from BMC Plant Biology
#18
of 57 outputs
Altmetric has tracked 22,862,742 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,260 research outputs from this source. They receive a mean Attention Score of 3.0. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 269,982 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 57 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.