↓ Skip to main content

Linking F-box protein 7 and parkin to neuronal degeneration in Parkinson’s disease (PD)

Overview of attention for article published in Molecular Brain, April 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
57 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Linking F-box protein 7 and parkin to neuronal degeneration in Parkinson’s disease (PD)
Published in
Molecular Brain, April 2016
DOI 10.1186/s13041-016-0218-2
Pubmed ID
Authors

Zhi Dong Zhou, Sushmitha Sathiyamoorthy, Dario C. Angeles, Eng King Tan

Abstract

Mutations of F-box protein 7 (FBXO7) and Parkin, two proteins in ubiquitin-proteasome system (UPS), are both implicated in pathogenesis of dopamine (DA) neuron degeneration in Parkinson's disease (PD). Parkin is a HECT/RING hybrid ligase that physically receives ubiquitin on its catalytic centre and passes ubiquitin onto its substrates, whereas FBXO7 is an adaptor protein in Skp-Cullin-F-box (SCF) SCF(FBXO7) ubiquitin E3 ligase complex to recognize substrates and mediate substrates ubiquitination by SCF(FBXO7) E3 ligase. Here, we discuss the overlapping pathophysiologic mechanisms and clinical features linking Parkin and FBXO7 with autosomal recessive PD. Both proteins play an important role in neuroprotective mitophagy to clear away impaired mitochondria. Parkin can be recruited to impaired mitochondria whereas cellular stress can promote FBXO7 mitochondrial translocation. PD-linked FBXO7 can recruit Parkin into damaged mitochondria and facilitate its aggregation. WT FBXO7, but not PD-linked FBXO7 mutants can rescue DA neuron degeneration in Parkin null Drosophila. A better understanding of the common pathophysiologic mechanisms of these two proteins could unravel specific pathways for targeted therapy in PD.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 56 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 21%
Student > Ph. D. Student 10 18%
Researcher 9 16%
Student > Bachelor 8 14%
Student > Doctoral Student 3 5%
Other 7 12%
Unknown 8 14%
Readers by discipline Count As %
Neuroscience 12 21%
Biochemistry, Genetics and Molecular Biology 10 18%
Agricultural and Biological Sciences 10 18%
Medicine and Dentistry 8 14%
Nursing and Health Professions 2 4%
Other 6 11%
Unknown 9 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 July 2016.
All research outputs
#3,221,991
of 23,577,654 outputs
Outputs from Molecular Brain
#169
of 1,143 outputs
Outputs of similar age
#51,738
of 300,756 outputs
Outputs of similar age from Molecular Brain
#7
of 34 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,143 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,756 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.