↓ Skip to main content

Geomfinder: a multi-feature identifier of similar three-dimensional protein patterns: a ligand-independent approach

Overview of attention for article published in Journal of Cheminformatics, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Geomfinder: a multi-feature identifier of similar three-dimensional protein patterns: a ligand-independent approach
Published in
Journal of Cheminformatics, April 2016
DOI 10.1186/s13321-016-0131-9
Pubmed ID
Authors

Gabriel Núñez-Vivanco, Alejandro Valdés-Jiménez, Felipe Besoaín, Miguel Reyes-Parada

Abstract

Since the structure of proteins is more conserved than the sequence, the identification of conserved three-dimensional (3D) patterns among a set of proteins, can be important for protein function prediction, protein clustering, drug discovery and the establishment of evolutionary relationships. Thus, several computational applications to identify, describe and compare 3D patterns (or motifs) have been developed. Often, these tools consider a 3D pattern as that described by the residues surrounding co-crystallized/docked ligands available from X-ray crystal structures or homology models. Nevertheless, many of the protein structures stored in public databases do not provide information about the location and characteristics of ligand binding sites and/or other important 3D patterns such as allosteric sites, enzyme-cofactor interaction motifs, etc. This makes necessary the development of new ligand-independent methods to search and compare 3D patterns in all available protein structures. Here we introduce Geomfinder, an intuitive, flexible, alignment-free and ligand-independent web server for detailed estimation of similarities between all pairs of 3D patterns detected in any two given protein structures. We used around 1100 protein structures to form pairs of proteins which were assessed with Geomfinder. In these analyses each protein was considered in only one pair (e.g. in a subset of 100 different proteins, 50 pairs of proteins can be defined). Thus: (a) Geomfinder detected identical pairs of 3D patterns in a series of monoamine oxidase-B structures, which corresponded to the effectively similar ligand binding sites at these proteins; (b) we identified structural similarities among pairs of protein structures which are targets of compounds such as acarbose, benzamidine, adenosine triphosphate and pyridoxal phosphate; these similar 3D patterns are not detected using sequence-based methods; (c) the detailed evaluation of three specific cases showed the versatility of Geomfinder, which was able to discriminate between similar and different 3D patterns related to binding sites of common substrates in a range of diverse proteins. Geomfinder allows detecting similar 3D patterns between any two pair of protein structures, regardless of the divergency among their amino acids sequences. Although the software is not intended for simultaneous multiple comparisons in a large number of proteins, it can be particularly useful in cases such as the structure-based design of multitarget drugs, where a detailed analysis of 3D patterns similarities between a few selected protein targets is essential.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 4%
India 1 4%
Germany 1 4%
Unknown 24 89%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 22%
Student > Master 4 15%
Researcher 3 11%
Student > Doctoral Student 2 7%
Professor 2 7%
Other 4 15%
Unknown 6 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 22%
Chemistry 4 15%
Computer Science 4 15%
Biochemistry, Genetics and Molecular Biology 3 11%
Medicine and Dentistry 2 7%
Other 3 11%
Unknown 5 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 April 2016.
All research outputs
#15,369,653
of 22,865,319 outputs
Outputs from Journal of Cheminformatics
#752
of 837 outputs
Outputs of similar age
#179,577
of 299,111 outputs
Outputs of similar age from Journal of Cheminformatics
#11
of 13 outputs
Altmetric has tracked 22,865,319 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 837 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one is in the 5th percentile – i.e., 5% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,111 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.