↓ Skip to main content

A step forward understanding HIV-1 diversity

Overview of attention for article published in Retrovirology, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A step forward understanding HIV-1 diversity
Published in
Retrovirology, April 2016
DOI 10.1186/s12977-016-0259-8
Pubmed ID
Authors

Redmond P. Smyth, Matteo Negroni

Abstract

Human immunodeficiency virus (HIV) populations are characterized by extensive genetic diversity. Antigenic diversification is essential for escape from immune selection and therapy, and remains one of the major obstacles for the development of an efficient vaccine strategy. Even if intensive efforts have been made for understanding the molecular mechanisms responsible for genetic diversity in HIV, conclusive data in vivo is still lacking. Recent works have addressed this issue, focusing on the identification of the sources of genetic diversity during in vivo infections and on the estimate of the pervasiveness of genetic recombination during replication in vivo. Surprisingly, it appears that despite the error-prone nature of the viral polymerase, the bulk of mutations found in patients are indeed due to the effect of a cellular restriction factor. This factor tends to hypermutate the viral genome abolishing viral infectivity. When hypermutation is incomplete, the virus retains infectivity and converts the effect of the cellular factor to its advantage by exploiting it to generate genetic diversity that is beneficial for viral propagation. This view contrasts the long-standing dogma that viral diversity is due to the intrinsic error-prone nature of the viral replication cycle. Besides hypermutations and mutations, recombination is also a pervasive source of genetic diversity. The estimate of the frequency at which this process takes place in vivo has remained elusive, despite extensive efforts in this sense. Now, using single genome amplification, and starting from publically available datasets, it has been obtained a confirmation of the estimates previously made using tissue culture studies. These recent findings are presented here and their implications for the development of future researches are discussed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 26%
Student > Ph. D. Student 9 17%
Researcher 6 11%
Student > Bachelor 5 9%
Student > Doctoral Student 2 4%
Other 6 11%
Unknown 12 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 30%
Agricultural and Biological Sciences 10 19%
Immunology and Microbiology 6 11%
Medicine and Dentistry 4 7%
Engineering 2 4%
Other 3 6%
Unknown 13 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 January 2017.
All research outputs
#15,026,447
of 23,879,989 outputs
Outputs from Retrovirology
#707
of 1,129 outputs
Outputs of similar age
#163,795
of 302,435 outputs
Outputs of similar age from Retrovirology
#17
of 24 outputs
Altmetric has tracked 23,879,989 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,129 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 302,435 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.