↓ Skip to main content

Functional imaging for regenerative medicine

Overview of attention for article published in Stem Cell Research & Therapy, April 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

blogs
1 blog
twitter
10 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Functional imaging for regenerative medicine
Published in
Stem Cell Research & Therapy, April 2016
DOI 10.1186/s13287-016-0315-2
Pubmed ID
Authors

Martin Leahy, Kerry Thompson, Haroon Zafar, Sergey Alexandrov, Mark Foley, Cathal O’Flatharta, Peter Dockery

Abstract

In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can be divided according to whether labels are used and as to whether the imaging can be done in vivo. In vivo human imaging places additional restrictions on the imaging tools that can be used. Microscopies and nanoscopies, especially those requiring fluorescent markers, have made an extraordinary impact on discovery at the molecular and cellular level, but due to their very limited ability to focus in the scattering tissues encountered for in vivo applications they are largely confined to superficial imaging applications in research laboratories. Nanoscopy, which has tremendous benefits in resolution, is limited to the near-field (e.g. near-field scanning optical microscope (NSNOM)) or to very high light intensity (e.g. stimulated emission depletion (STED)) or to slow stochastic events (photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)). In all cases, nanoscopy is limited to very superficial applications. Imaging depth may be increased using multiphoton or coherence gating tricks. Scattering dominates the limitation on imaging depth in most tissues and this can be mitigated by the application of optical clearing techniques that can impose mild (e.g. topical application of glycerol) or severe (e.g. CLARITY) changes to the tissue to be imaged. Progression of therapies through to clinical trials requires some thought as to the imaging and sensing modalities that should be used. Smoother progression is facilitated by the use of comparable imaging modalities throughout the discovery and trial phases, giving label-free techniques an advantage wherever they can be used, although this is seldom considered in the early stages. In this paper, we will explore the techniques that have found success in aiding discovery in stem cell therapies and try to predict the likely technologies best suited to translation and future directions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 2 3%
Italy 1 1%
Unknown 64 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 19%
Student > Ph. D. Student 9 13%
Student > Master 8 12%
Student > Doctoral Student 6 9%
Student > Bachelor 5 7%
Other 10 15%
Unknown 16 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 21%
Engineering 9 13%
Agricultural and Biological Sciences 6 9%
Medicine and Dentistry 4 6%
Computer Science 2 3%
Other 11 16%
Unknown 21 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 April 2022.
All research outputs
#2,464,936
of 23,515,383 outputs
Outputs from Stem Cell Research & Therapy
#172
of 2,483 outputs
Outputs of similar age
#40,899
of 300,778 outputs
Outputs of similar age from Stem Cell Research & Therapy
#6
of 34 outputs
Altmetric has tracked 23,515,383 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,483 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,778 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.