↓ Skip to main content

Development of a deregulating microRNA panel for the detection of early relapse in postoperative colorectal cancer patients

Overview of attention for article published in Journal of Translational Medicine, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development of a deregulating microRNA panel for the detection of early relapse in postoperative colorectal cancer patients
Published in
Journal of Translational Medicine, April 2016
DOI 10.1186/s12967-016-0856-2
Pubmed ID
Authors

I-Ping Yang, Hsiang-Lin Tsai, Zhi-Feng Miao, Ching-Wen Huang, Chao-Hung Kuo, Jeng-Yih Wu, Wen-Ming Wang, Suh-Hang Hank Juo, Jaw-Yuan Wang

Abstract

Colorectal cancer (CRC) is the third leading cause of cancer mortality worldwide and is associated with high recurrence and mortality, despite recent advancements in therapeutic strategies. MicroRNA (miR) deregulation is associated with CRC development and recurrence; therefore, miRs may be reliable biomarkers for detecting early relapse postoperatively. In this study ten candidates were identified using miR arrays: miR-7, miR-31, miR-93, miR-141, miR-195, miR-375, miR-429, miR-494, miR-650, and let-7b. Substantial differences were observed in their expression levels between early relapsed (recurrences within 12 months after surgery) and non-early relapsed CRC patients. The validation study, including 50 early relapsed and 54 non-early relapsed patients, confirmed miR expression alterations in cancer tissue samples. Using a miR real-time quantitative polymerase chain reaction (RT-qPCR), we observed that expression levels of miR-93, miR-195, and let-7b were significantly decreased, whereas those of miR-7, miR-141 and miR-494 showed increases that were more significant in the CRC tissue samples from the early relapsed patients than in those from the non-early relapsed patients. Disease-free survival and overall survival were significantly worse in the high miR-7, miR-141, and miR-494 expression subgroups and the low miR-93 and miR-195 expression subgroups (all P < 0.05). A panel of 6 miRs (miR-7, miR-93, miR-195, miR-141, miR-494, and let-7b), at a cut-off value of 2 deregulated miRs, distinguished early relapsed CRC from non-early relapsed CRC, with a sensitivity of 76.6 % and a specificity of 71.4 %. By combining this 6-miRs panel with 6 clinicopathologic factors, at a cut-off value of 4, distinguished early relapsed CRC from non-early relapsed CRC, with a sensitivity of 89.4 % and a specificity of 88.9 %. This study showed that the developed miR panel has the potential to improve predicting early relapse in CRC patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 22%
Researcher 6 19%
Student > Master 5 16%
Student > Bachelor 3 9%
Professor 2 6%
Other 2 6%
Unknown 7 22%
Readers by discipline Count As %
Medicine and Dentistry 8 25%
Biochemistry, Genetics and Molecular Biology 5 16%
Nursing and Health Professions 2 6%
Agricultural and Biological Sciences 2 6%
Psychology 1 3%
Other 5 16%
Unknown 9 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 May 2016.
All research outputs
#14,847,187
of 22,867,327 outputs
Outputs from Journal of Translational Medicine
#1,977
of 4,002 outputs
Outputs of similar age
#169,951
of 299,065 outputs
Outputs of similar age from Journal of Translational Medicine
#56
of 100 outputs
Altmetric has tracked 22,867,327 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,002 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,065 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 100 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.