↓ Skip to main content

Effect of obesity on molecular characteristics of invasive breast tumors: gene expression analysis in a large cohort of female patients

Overview of attention for article published in BMC Obesity, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effect of obesity on molecular characteristics of invasive breast tumors: gene expression analysis in a large cohort of female patients
Published in
BMC Obesity, April 2016
DOI 10.1186/s40608-016-0103-7
Pubmed ID
Authors

Allyson L. Toro, Nicholas S. Costantino, Craig D. Shriver, Darrell L. Ellsworth, Rachel E. Ellsworth

Abstract

Obesity is a risk factor for breast cancer in postmenopausal women and is associated with decreased survival and less favorable clinical characteristics such as greater tumor burden, higher grade, and poor prognosis, regardless of menopausal status. Despite the negative impact of obesity on clinical outcome, molecular mechanisms through which excess adiposity influences breast cancer etiology are not well-defined. Affymetrix U133 2.0 gene expression data were generated for 405 primary breast tumors using RNA isolated from laser microdissected tissues. Patients were classified as normal-weight (BMI < 25), overweight (BMI 25-29.9) or obese (BMI ≥ 30). Statistical analysis was performed by ANOVA using Partek Genomics Suite version 6.6 using a false discovery rate <0.05 to define significance. Obese patients were significantly more likely to be diagnosed ≥50 years or with African American ancestry compared to lean or overweight women. Pathological characteristics including tumor stage, size or grade, lymph node status, intrinsic subtype, and breast cancer mortality did not differ significantly between groups. No significant gene expression differences were detected by BMI in a non-stratified analysis which included all subtypes or within luminal B, HER2-enriched or basal-like subtypes. Within luminal A tumors, however, 44 probes representing 42 genes from pathways such as cell cycle, p53 and mTOR signaling, DNA repair, and transcriptional misregulation were differentially expressed. Identification of transcriptome differences in luminal A tumors from normal-weight compared to obese women suggests that obesity alters gene expression within ER+ tumor epithelial cells. Alterations of pathways involved in cell cycle control, tumorigenesis and metabolism may promote cellular proliferation and provide a molecular explanation for less favorable outcome of obese women with breast cancer. Targeted treatments, such as mTOR inhibitors, may allow for improved treatment and survival of obese women, especially African American women, who are more likely to be obese and suffer outcome disparities.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 2%
Unknown 52 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 21%
Student > Ph. D. Student 9 17%
Student > Bachelor 6 11%
Student > Master 5 9%
Professor > Associate Professor 3 6%
Other 6 11%
Unknown 13 25%
Readers by discipline Count As %
Medicine and Dentistry 15 28%
Biochemistry, Genetics and Molecular Biology 12 23%
Agricultural and Biological Sciences 4 8%
Nursing and Health Professions 2 4%
Computer Science 2 4%
Other 1 2%
Unknown 17 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2016.
All research outputs
#15,371,100
of 22,867,327 outputs
Outputs from BMC Obesity
#138
of 184 outputs
Outputs of similar age
#179,493
of 299,065 outputs
Outputs of similar age from BMC Obesity
#9
of 10 outputs
Altmetric has tracked 22,867,327 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 184 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,065 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one.