↓ Skip to main content

Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering

Overview of attention for article published in Microbial Cell Factories, November 2019
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

twitter
3 X users
wikipedia
1 Wikipedia page

Readers on

mendeley
88 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering
Published in
Microbial Cell Factories, November 2019
DOI 10.1186/s12934-019-1255-1
Pubmed ID
Authors

Ioannis Mougiakos, Enrico Orsi, Mohammad Rifqi Ghiffary, Wilbert Post, Alberto de Maria, Belén Adiego-Perez, Servé W. M. Kengen, Ruud A. Weusthuis, John van der Oost

Abstract

Rhodobacter sphaeroides is a metabolically versatile bacterium that serves as a model for analysis of photosynthesis, hydrogen production and terpene biosynthesis. The elimination of by-products formation, such as poly-β-hydroxybutyrate (PHB), has been an important metabolic engineering target for R. sphaeroides. However, the lack of efficient markerless genome editing tools for R. sphaeroides is a bottleneck for fundamental studies and biotechnological exploitation. The Cas9 RNA-guided DNA-endonuclease from the type II CRISPR-Cas system of Streptococcus pyogenes (SpCas9) has been extensively employed for the development of genome engineering tools for prokaryotes and eukaryotes, but not for R. sphaeroides. Here we describe the development of a highly efficient SpCas9-based genomic DNA targeting system for R. sphaeroides, which we combine with plasmid-borne homologous recombination (HR) templates developing a Cas9-based markerless and time-effective genome editing tool. We further employ the tool for knocking-out the uracil phosphoribosyltransferase (upp) gene from the genome of R. sphaeroides, as well as knocking it back in while altering its start codon. These proof-of-principle processes resulted in editing efficiencies of up to 100% for the knock-out yet less than 15% for the knock-in. We subsequently employed the developed genome editing tool for the consecutive deletion of the two predicted acetoacetyl-CoA reductase genes phaB and phbB in the genome of R. sphaeroides. The culturing of the constructed knock-out strains under PHB producing conditions showed that PHB biosynthesis is supported only by PhaB, while the growth of the R. sphaeroides ΔphbB strains under the same conditions is only slightly affected. In this study, we combine the SpCas9 targeting activity with the native homologous recombination (HR) mechanism of R. sphaeroides for the development of a genome editing tool. We further employ the developed tool for the elucidation of the PHB production pathway of R. sphaeroides. We anticipate that the presented work will accelerate molecular research with R. sphaeroides.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 88 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 88 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 22%
Student > Bachelor 12 14%
Researcher 10 11%
Student > Doctoral Student 4 5%
Professor > Associate Professor 4 5%
Other 9 10%
Unknown 30 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 34 39%
Agricultural and Biological Sciences 12 14%
Immunology and Microbiology 3 3%
Engineering 2 2%
Environmental Science 1 1%
Other 4 5%
Unknown 32 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 January 2021.
All research outputs
#5,710,837
of 23,177,498 outputs
Outputs from Microbial Cell Factories
#367
of 1,621 outputs
Outputs of similar age
#120,278
of 458,595 outputs
Outputs of similar age from Microbial Cell Factories
#4
of 24 outputs
Altmetric has tracked 23,177,498 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,621 research outputs from this source. They receive a mean Attention Score of 4.4. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 458,595 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.