↓ Skip to main content

Global, cancer-specific microRNA cluster hypomethylation was functionally associated with the development of non-B non-C hepatocellular carcinoma

Overview of attention for article published in Molecular Cancer, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Global, cancer-specific microRNA cluster hypomethylation was functionally associated with the development of non-B non-C hepatocellular carcinoma
Published in
Molecular Cancer, April 2016
DOI 10.1186/s12943-016-0514-6
Pubmed ID
Authors

Masanori Nojima, Takeshi Matsui, Akihiro Tamori, Shoji Kubo, Ken Shirabe, Koichi Kimura, Mitsuo Shimada, Tohru Utsunomiya, Yasuteru Kondo, Etsuko Iio, Yutaka Naito, Takahiro Ochiya, Yasuhito Tanaka

Abstract

While hepatitis B and C viral infection have been suppressed, non-B non-C hepatocellular carcinoma (NBNC-HCC) is considered to be rising in incidence terms in some developed countries where prevalence of those viral infections among HCC patients had been very high (such as Japan, Korea, and Italy). To elucidate critical molecular changes in NBNC-HCC, we integrated three large datasets relating to comprehensive array-based analysis of genome-wide DNA methylation (N = 43 pairs) and mRNA/miRNA expression (N = 15, and 24 pairs, respectively) via statistical modeling. Hierarchical clustering of DNA methylation in miRNA coding regions clearly distinguished NBNC-HCC tissue samples from relevant background tissues, revealing a remarkable tumor-specific hypomethylation cluster. In addition, miRNA clusters were extremely hypomethylated in tumor samples (median methylation change for non-clustered miRNAs: -2.3%, clustered miRNAs: -24.6%). The proportion of CpGs hypomethylated in more than 90% of the samples was 55.9% of all CpGs within miRNA clusters, and the peak methylation level was drastically shifted from 84% to 39%. Following statistical adjustment, the difference in methylation levels within miRNA coding regions was positively associated with their expression change. Receiver operating characteristic (ROC) analysis revealed a great discriminatory ability in respect to cluster-miRNA methylation. Moreover, miRNA methylation change was negatively correlated with corresponding target gene expression amongst conserved and highly matched miRNA sites. We observed a drastic negative shift of methylation levels in miRNA cluster regions. Changes in methylation status of miRNAs were more indicative of target gene expression and pathological diagnosis than respective miRNA expression changes, suggesting the importance of genome-wide miRNA methylation for tumor development. Our study dynamically summarized global miRNA hypomethylation and its genome-wide scale consequence in NBNC-HCC.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 33%
Researcher 3 17%
Student > Master 2 11%
Student > Doctoral Student 1 6%
Other 1 6%
Other 1 6%
Unknown 4 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 44%
Agricultural and Biological Sciences 2 11%
Medicine and Dentistry 2 11%
Immunology and Microbiology 1 6%
Nursing and Health Professions 1 6%
Other 0 0%
Unknown 4 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 May 2016.
All research outputs
#14,260,335
of 22,867,327 outputs
Outputs from Molecular Cancer
#904
of 1,724 outputs
Outputs of similar age
#159,540
of 298,447 outputs
Outputs of similar age from Molecular Cancer
#10
of 24 outputs
Altmetric has tracked 22,867,327 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,724 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,447 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.