↓ Skip to main content

CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains

Overview of attention for article published in Genome Biology, December 2019
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
59 X users

Citations

dimensions_citation
57 Dimensions

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains
Published in
Genome Biology, December 2019
DOI 10.1186/s13059-019-1896-8
Pubmed ID
Authors

David Llères, Benoît Moindrot, Rakesh Pathak, Vincent Piras, Mélody Matelot, Benoît Pignard, Alice Marchand, Mallory Poncelet, Aurélien Perrin, Virgile Tellier, Robert Feil, Daan Noordermeer

Abstract

Genomic imprinting is essential for mammalian development and provides a unique paradigm to explore intra-cellular differences in chromatin configuration. So far, the detailed allele-specific chromatin organization of imprinted gene domains has mostly been lacking. Here, we explored the chromatin structure of the two conserved imprinted domains controlled by paternal DNA methylation imprints-the Igf2-H19 and Dlk1-Dio3 domains-and assessed the involvement of the insulator protein CTCF in mouse cells. Both imprinted domains are located within overarching topologically associating domains (TADs) that are similar on both parental chromosomes. At each domain, a single differentially methylated region is bound by CTCF on the maternal chromosome only, in addition to multiple instances of bi-allelic CTCF binding. Combinations of allelic 4C-seq and DNA-FISH revealed that bi-allelic CTCF binding alone, on the paternal chromosome, correlates with a first level of sub-TAD structure. On the maternal chromosome, additional CTCF binding at the differentially methylated region adds a further layer of sub-TAD organization, which essentially hijacks the existing paternal-specific sub-TAD organization. Perturbation of maternal-specific CTCF binding site at the Dlk1-Dio3 locus, using genome editing, results in perturbed sub-TAD organization and bi-allelic Dlk1 activation during differentiation. Maternal allele-specific CTCF binding at the imprinted Igf2-H19 and the Dlk1-Dio3 domains adds an additional layer of sub-TAD organization, on top of an existing three-dimensional configuration and prior to imprinted activation of protein-coding genes. We speculate that this allele-specific sub-TAD organization provides an instructive or permissive context for imprinted gene activation during development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 59 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 65 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 26%
Researcher 11 17%
Student > Master 9 14%
Student > Bachelor 5 8%
Student > Doctoral Student 3 5%
Other 6 9%
Unknown 14 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 34 52%
Agricultural and Biological Sciences 7 11%
Computer Science 2 3%
Medicine and Dentistry 2 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 2 3%
Unknown 17 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 33. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2020.
All research outputs
#1,209,027
of 25,387,668 outputs
Outputs from Genome Biology
#908
of 4,470 outputs
Outputs of similar age
#29,057
of 474,537 outputs
Outputs of similar age from Genome Biology
#37
of 96 outputs
Altmetric has tracked 25,387,668 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,470 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 27.6. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 474,537 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 96 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.