↓ Skip to main content

Impact of extrusion processing conditions on lipid peroxidation and storage stability of full-fat flaxseed meal

Overview of attention for article published in Lipids in Health and Disease, August 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of extrusion processing conditions on lipid peroxidation and storage stability of full-fat flaxseed meal
Published in
Lipids in Health and Disease, August 2015
DOI 10.1186/s12944-015-0076-4
Pubmed ID
Authors

Muhammad Imran, Faqir Muhammad Anjum, Nazir Ahmad, Muhammad Kamran Khan, Zarina Mushtaq, Muhammad Nadeem, Shahzad Hussain

Abstract

The full-fat flaxseed (Linum usitatissimum L.) meal has obtained relatively new flourished concept as food or feedstuff for the development of healthier products. It provides favorable balance of polyunsaturated, monounsaturated and saturated fatty acids. However, flaxseed meal may be susceptible to oxidation by exposure to various storage conditions which is extremely undesirable and produces toxic compounds to human health. Another consideration in the application of flaxseed meal relates to the presence of anti-nutritional compounds that need to be minimized using appropriate processing method. The present research work was conducted to evaluate the impact of extrusion processing conditions and storage of full-fat flaxseed meal on functional characteristics such as α-linolenic acid content, lipid peroxidation and sensory attributes. The raw flaxseed meal was analyzed for cyanogenic glycosides, tannin and mucilage anti-nutritional compounds. Fatty acids composition was quantified by gas chromatography. The meal was extruded at barrel exit temperature (100-140 °C), screw speed (50-150 rpm), feed rate (30-90 kg/h) and feed moisture (10-30 %) for reduction of anti-nutritional compounds. The raw and extruded meals were stored for a ninety-day period under room conditions (20-25 °C). Lipid peroxidation was analyzed by peroxide, free fatty acids, conjugated dienes, total volatiles and malondialdehyde assay. Color, aroma and overall acceptability attributes were evaluated by sensory multiple comparison tests. The raw flaxseed meal possessed significant amount of anti-nutritional compounds, lipid and α-linolenic acid contents. The extrusion processing at high barrel exit temperature (140 °C) significantly reduced the cyanogenic compounds (84 %), tannin (73 %) and mucilage (27 %) in the flaxseed meal. The α-linolenic acid content and lipid peroxidation did not significantly change after extrusion processing or during storage at the end of 60 days. Fluctuations in sensory attributes occurred during storage, but at the end of 90 days, only the extruded samples presented negative effect and showed lowest consumer acceptability. The present study suggested that extrusion of flaxseed meal at optimum conditions and stored for 60 days did not change the stability of full-fat flaxseed meal and can be used as supplement or ingredient for the production of various healthier products.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Croatia 2 3%
Unknown 67 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 17%
Student > Bachelor 10 14%
Student > Ph. D. Student 8 12%
Researcher 7 10%
Student > Doctoral Student 6 9%
Other 11 16%
Unknown 15 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 32%
Nursing and Health Professions 4 6%
Medicine and Dentistry 3 4%
Engineering 3 4%
Chemistry 3 4%
Other 11 16%
Unknown 23 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 May 2016.
All research outputs
#20,326,948
of 22,870,727 outputs
Outputs from Lipids in Health and Disease
#1,204
of 1,451 outputs
Outputs of similar age
#223,328
of 266,242 outputs
Outputs of similar age from Lipids in Health and Disease
#27
of 34 outputs
Altmetric has tracked 22,870,727 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,451 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,242 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.