↓ Skip to main content

Donnan effect on chloride ion distribution as a determinant of body fluid composition that allows action potentials to spread via fast sodium channels

Overview of attention for article published in Theoretical Biology and Medical Modelling, May 2011
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Donnan effect on chloride ion distribution as a determinant of body fluid composition that allows action potentials to spread via fast sodium channels
Published in
Theoretical Biology and Medical Modelling, May 2011
DOI 10.1186/1742-4682-8-16
Pubmed ID
Authors

Sven Kurbel

Abstract

Proteins in any solution with a pH value that differs from their isoelectric point exert both an electric Donnan effect (DE) and colloid osmotic pressure. While the former alters the distribution of ions, the latter forces water diffusion. In cells with highly Cl--permeable membranes, the resting potential is more dependent on the cytoplasmic pH value, which alters the Donnan effect of cell proteins, than on the current action of Na/K pumps. Any weak (positive or negative) electric disturbances of their resting potential are quickly corrected by chloride shifts.In many excitable cells, the spreading of action potentials is mediated through fast, voltage-gated sodium channels. Tissue cells share similar concentrations of cytoplasmic proteins and almost the same exposure to the interstitial fluid (IF) chloride concentration. The consequence is that similar intra- and extra-cellular chloride concentrations make these cells share the same Nernst value for Cl-.Further extrapolation indicates that cells with the same chloride Nernst value and high chloride permeability should have similar resting membrane potentials, more negative than -80 mV. Fast sodium channels require potassium levels >20 times higher inside the cell than around it, while the concentration of Cl- ions needs to be >20 times higher outside the cell.When osmotic forces, electroneutrality and other ions are all taken into account, the overall osmolarity needs to be near 280 to 300 mosm/L to reach the required resting potential in excitable cells. High plasma protein concentrations keep the IF chloride concentration stable, which is important in keeping the resting membrane potential similar in all chloride-permeable cells. Probable consequences of this concept for neuron excitability, erythrocyte membrane permeability and several features of circulation design are briefly discussed.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Sweden 1 3%
Denmark 1 3%
Unknown 30 94%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 16%
Researcher 5 16%
Student > Ph. D. Student 5 16%
Student > Doctoral Student 3 9%
Lecturer 1 3%
Other 3 9%
Unknown 10 31%
Readers by discipline Count As %
Medicine and Dentistry 7 22%
Biochemistry, Genetics and Molecular Biology 3 9%
Agricultural and Biological Sciences 2 6%
Engineering 2 6%
Physics and Astronomy 2 6%
Other 5 16%
Unknown 11 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 June 2012.
All research outputs
#18,308,895
of 22,668,244 outputs
Outputs from Theoretical Biology and Medical Modelling
#214
of 287 outputs
Outputs of similar age
#94,583
of 111,052 outputs
Outputs of similar age from Theoretical Biology and Medical Modelling
#6
of 8 outputs
Altmetric has tracked 22,668,244 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 287 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.4. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 111,052 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.