↓ Skip to main content

Sustained release of rhBMP-2 from microporous tricalciumphosphate using hydrogels as a carrier

Overview of attention for article published in BMC Biotechnology, May 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sustained release of rhBMP-2 from microporous tricalciumphosphate using hydrogels as a carrier
Published in
BMC Biotechnology, May 2016
DOI 10.1186/s12896-016-0275-8
Pubmed ID
Authors

Steffen Kissling, Michael Seidenstuecker, Ingo H. Pilz, Norbert P. Suedkamp, Hermann O. Mayr, Anke Bernstein

Abstract

Tissue engineering and bone substitutes are subjects of intensive ongoing research. If the healing of bone fractures is delayed, osteoinductive materials that induce mesenchymal stem cells (MSCs) to form bone are necessary. The use of Bone Morphogenetic Protein - 2 is a common means to enhance effectiveness and accelerate the healing process. A delivery system that maintains and releases BMP biological activity in controlled fashion at the surgical site while preventing systemic diffusion (and thereby the risk of undesirable effects by controlling the amount of protein implanted) is essential. In this study, we aimed to test a cylindrical TCP-scaffold (porosity ~ 40 %, mean pore size 5 μm, high interconnectivity) in comparison to BMP-2. Recombinant human BMP-2 was dissolved in different hydrogels as a carrier, namely gelatin and alginate cross-linked with CaCl2-solution, or a solution of GDL and CaCO3. FITC-labeled Protein A was used as a model substance for rhBMP-2 in the pre-trials. For loading, the samples were put in a flow chamber and sealed with silicone rings. Using a directional vacuum, the samples were loaded with the alginate-BMP-2-mixture and the loading success monitored by observing changes in a fluorescent dye (FITC labeled Protein A) under a fluorescence microscope. A fluorescence reader and ELISA were employed to measure the release. Efficacy was determined in cell culture experiments (MG63 cells) via Live-Dead-Assay, FACS, WST-1-Assay, pNPP alkaline phosphatase assay and confocal microscopy. For statistical analysis, we calculated the mean and standard deviation and carried out an analysis of variance. Directional vacuum makes it possible to load nearly 100 % of the interconnected micropores with alginate mixed with rhBMP-2. Using alginate hardened with CaCl2 as a carrier, BMP-2's release can be decelerated significantly longer than with other hydrogels - eg, for over 28 days. The effects on osteoblast-like cells were an increase of the growth rate and expression of alkaline phosphatase while triggering no toxic effect. The rhBMP-2-loaded microporous TCP scaffolds possess proliferative and osteoinductive potential. Alginate helps to lower the local growth factor dose below the cytotoxic limit, and allows the release period to be lengthened by at least 28 days.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 23%
Professor 2 7%
Student > Doctoral Student 2 7%
Student > Ph. D. Student 2 7%
Researcher 2 7%
Other 6 20%
Unknown 9 30%
Readers by discipline Count As %
Medicine and Dentistry 7 23%
Biochemistry, Genetics and Molecular Biology 3 10%
Engineering 3 10%
Chemistry 2 7%
Materials Science 2 7%
Other 4 13%
Unknown 9 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 May 2016.
All research outputs
#18,459,684
of 22,873,031 outputs
Outputs from BMC Biotechnology
#763
of 935 outputs
Outputs of similar age
#250,129
of 333,293 outputs
Outputs of similar age from BMC Biotechnology
#17
of 21 outputs
Altmetric has tracked 22,873,031 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 935 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.8. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,293 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.