↓ Skip to main content

Electric oscillation and coupling of chromatin regulate chromosome packaging and transcription in eukaryotic cells

Overview of attention for article published in Theoretical Biology and Medical Modelling, July 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Electric oscillation and coupling of chromatin regulate chromosome packaging and transcription in eukaryotic cells
Published in
Theoretical Biology and Medical Modelling, July 2012
DOI 10.1186/1742-4682-9-27
Pubmed ID
Authors

Yue Zhao, Qimin Zhan

Abstract

Transcription in eukaryotic cells is efficiently spatially and temporally regulated, but how this genome-wide regulation is achieved at the physical level remains unclear, given the limited transcriptional resources within the nucleus and the sporadic linear arrangements of genes within chromosomes. In this article, we provide a physical model for chromatin cluster formation, based on oscillation synchronization and clustering of different chromatin regions, enabling efficient systemic genome-wide regulation of transcription. We also propose that the electromagnetic field generated by oscillation of chromatin is the driving force for chromosome packing during M phase. We further explore the physical mechanisms for chromatin oscillation cluster (COC) formation, and long-distance chromatin kissing. The COC model, which connects the dots between chromatin epigenetic modification and higher-order nuclear organization, answers many important questions, such as how the CCCTC-binding factor CTCF contributes to higher-order chromatin organization, and the mechanism of sequential transcriptional activation of HOX clusters. In the COC model, long non-coding RNAs function as oscillation clustering adaptors to recruit chromatin modification factors to specific sub-nuclear regions, fine-tuning transcriptional events in the chromatin oscillation clusters. Introns of eukaryotic genes have evolved to promote the clustering of transcriptionally co-regulated genes in these sub-nuclear regions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 3%
Bulgaria 1 3%
France 1 3%
Switzerland 1 3%
Unknown 29 88%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 36%
Researcher 9 27%
Other 3 9%
Student > Master 3 9%
Professor 2 6%
Other 4 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 45%
Biochemistry, Genetics and Molecular Biology 6 18%
Medicine and Dentistry 4 12%
Computer Science 2 6%
Nursing and Health Professions 1 3%
Other 4 12%
Unknown 1 3%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 July 2012.
All research outputs
#14,147,011
of 22,669,724 outputs
Outputs from Theoretical Biology and Medical Modelling
#154
of 287 outputs
Outputs of similar age
#96,619
of 164,352 outputs
Outputs of similar age from Theoretical Biology and Medical Modelling
#4
of 10 outputs
Altmetric has tracked 22,669,724 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 287 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.4. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 164,352 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 6 of them.