↓ Skip to main content

Aggregation, impaired degradation and immunization targeting of amyloid-beta dimers in Alzheimer’s disease: a stochastic modelling approach

Overview of attention for article published in Molecular Neurodegeneration, July 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
2 Facebook pages

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aggregation, impaired degradation and immunization targeting of amyloid-beta dimers in Alzheimer’s disease: a stochastic modelling approach
Published in
Molecular Neurodegeneration, July 2012
DOI 10.1186/1750-1326-7-32
Pubmed ID
Authors

Carole J Proctor, Ilse Sanet Pienaar, Joanna L Elson, Thomas BL Kirkwood

Abstract

Alzheimer's disease (AD) is the most frequently diagnosed neurodegenerative disorder affecting humans, with advanced age being the most prominent risk factor for developing AD. Despite intense research efforts aimed at elucidating the precise molecular underpinnings of AD, a definitive answer is still lacking. In recent years, consensus has grown that dimerisation of the polypeptide amyloid-beta (Aß), particularly Aß₄₂, plays a crucial role in the neuropathology that characterise AD-affected post-mortem brains, including the large-scale accumulation of fibrils, also referred to as senile plaques. This has led to the realistic hope that targeting Aß₄₂ immunotherapeutically could drastically reduce plaque burden in the ageing brain, thus delaying AD onset or symptom progression. Stochastic modelling is a useful tool for increasing understanding of the processes underlying complex systems-affecting disorders such as AD, providing a rapid and inexpensive strategy for testing putative new therapies. In light of the tool's utility, we developed computer simulation models to examine Aß₄₂ turnover and its aggregation in detail and to test the effect of immunization against Aß dimers. Our model demonstrates for the first time that even a slight decrease in the clearance rate of Aß₄₂ monomers is sufficient to increase the chance of dimers forming, which could act as instigators of protofibril and fibril formation, resulting in increased plaque levels. As the process is slow and levels of Aβ are normally low, stochastic effects are important. Our model predicts that reducing the rate of dimerisation leads to a significant reduction in plaque levels and delays onset of plaque formation. The model was used to test the effect of an antibody mediated immunological response. Our results showed that plaque levels were reduced compared to conditions where antibodies are not present. Our model supports the current thinking that levels of dimers are important in initiating the aggregation process. Although substantial knowledge exists regarding the process, no therapeutic intervention is on offer that reliably decreases disease burden in AD patients. Computer modelling could serve as one of a number of tools to examine both the validity of reliable biomarkers and aid the discovery of successful intervention strategies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 1%
United States 1 1%
Netherlands 1 1%
Canada 1 1%
Unknown 74 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 19 24%
Student > Ph. D. Student 15 19%
Student > Master 10 13%
Student > Bachelor 7 9%
Student > Doctoral Student 3 4%
Other 7 9%
Unknown 17 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 15%
Medicine and Dentistry 8 10%
Neuroscience 6 8%
Biochemistry, Genetics and Molecular Biology 5 6%
Engineering 5 6%
Other 21 27%
Unknown 21 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 July 2012.
All research outputs
#16,579,551
of 25,371,288 outputs
Outputs from Molecular Neurodegeneration
#831
of 976 outputs
Outputs of similar age
#112,466
of 177,586 outputs
Outputs of similar age from Molecular Neurodegeneration
#10
of 15 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 976 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 16.6. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 177,586 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.