↓ Skip to main content

Enhanced whole exome sequencing by higher DNA insert lengths

Overview of attention for article published in BMC Genomics, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Enhanced whole exome sequencing by higher DNA insert lengths
Published in
BMC Genomics, May 2016
DOI 10.1186/s12864-016-2698-y
Pubmed ID
Authors

Claudia Pommerenke, Robert Geffers, Boyke Bunk, Sabin Bhuju, Sonja Eberth, Hans G. Drexler, Hilmar Quentmeier

Abstract

Whole exome sequencing (WES) has been proven to serve as a valuable basis for various applications such as variant calling and copy number variation (CNV) analyses. For those analyses the read coverage should be optimally balanced throughout protein coding regions at sufficient read depth. Unfortunately, WES is known for its uneven coverage within coding regions due to GC-rich regions or off-target enrichment. In order to examine the irregularities of WES within genes, we applied Agilent SureSelectXT exome capture on human samples and sequenced these via Illumina in 2 × 101 paired-end mode. As we suspected the sequenced insert length to be crucial in the uneven coverage of exome captured samples, we sheared 12 genomic DNA samples to two different DNA insert size lengths, namely 130 and 170 bp. Interestingly, although mean coverages of target regions were clearly higher in samples of 130 bp insert length, the level of evenness was more pronounced in 170 bp samples. Moreover, merging overlapping paired-end reads revealed a positive effect on evenness indicating overlapping reads as another reason for the unevenness. In addition, mutation analysis on a subset of the samples was performed. In these isogenic subclones, the false negative rate in the 130 bp samples was almost double to that in the 170 bp samples. Visual inspection of the discarded mutation sites exposed low coverages at the sites flanked by high amplitudes of coverage depth. Producing longer insert reads could be a good strategy to achieve better uniform read coverage in coding regions and hereby enhancing the effective sequencing yield to provide an improved basis for further variant calling and CNV analyses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 28%
Researcher 4 16%
Student > Master 3 12%
Other 2 8%
Student > Bachelor 2 8%
Other 2 8%
Unknown 5 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 40%
Agricultural and Biological Sciences 5 20%
Medicine and Dentistry 3 12%
Computer Science 1 4%
Unknown 6 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2016.
All research outputs
#13,471,094
of 22,875,477 outputs
Outputs from BMC Genomics
#5,011
of 10,665 outputs
Outputs of similar age
#174,419
of 335,850 outputs
Outputs of similar age from BMC Genomics
#92
of 197 outputs
Altmetric has tracked 22,875,477 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,665 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,850 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 197 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.