↓ Skip to main content

Reciprocal activation between STAT3 and miR-181b regulates the proliferation of esophageal cancer stem-like cells via the CYLD pathway

Overview of attention for article published in Molecular Cancer, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reciprocal activation between STAT3 and miR-181b regulates the proliferation of esophageal cancer stem-like cells via the CYLD pathway
Published in
Molecular Cancer, May 2016
DOI 10.1186/s12943-016-0521-7
Pubmed ID
Authors

Dan-dan Xu, Peng-jun Zhou, Ying Wang, Li Zhang, Wu-yu Fu, Bi-bo Ruan, Hai-peng Xu, Chao-zhi Hu, Lu Tian, Jin-hong Qin, Sheng Wang, Xiao Wang, Yi-cheng Li, Qiu-ying Liu, Zhe Ren, Rong Zhang, Yi-fei Wang

Abstract

Recent studies have suggested that cancer cells contain subpopulations that can initiate tumor growth, self-renew, and maintain tumor cell growth. However, for esophageal cancer cells, the relationship between STAT3, microRNAs and cancer stem cells remains unclear. Serum-free culture was used to enrich esophageal cancer stem-like cells (ECSLC). Flow cytometry determined the proportion of ECSLC. qPCR were performed to examine expression level of stemness factors, mesenchymal markers, ATP-binding cassette (ABC) transporters, STAT3, miR-181b, CYLD. Western blot were performed to analyze the expression of STAT3, p-STAT3 and CYLD (cylindromatosis). BALB/c mice xenograft studies were conducted to evaluate the tumorigenicity of enriched ECSLC. Sphere formation assay and colony formation assays were employed to analyze the relationship between STAT3 and miR-181b. Luciferase assays were used to evaluate activity which CYLD is a target of miR-181b. Sphere formation cells (SFCs) with properties of ECSLC were enriched. Enriched SFCs in serum-free suspension culture exhibited cancer stem-like cell properties and increased single-positive CD44 + CD24-, stemness factor, mesenchymal marker expression ABC transporters and tumorigenicity in vivo compared with the parental cells. Additionally, we found that reciprocal activation between STAT3 and miR-181b regulated SFCs proliferation. Moreover, STAT3 directly activated miR-181b transcription in SFCs and miR-181b then potentiated p-STAT3 activity. Luciferase assays indicated that CYLD was a direct and functional target of miR-181b. The mutual regulation between STAT3 and miR-181b in SFCs was required for proliferation and apoptosis resistance. STAT3 and miR-181b control each other's expression in a positive feedback loop that regulates SFCs via CYLD pathway. These findings maybe is helpful for targeting ECSLC and providing approach for esophageal cancer treatments.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Other 2 10%
Researcher 2 10%
Professor > Associate Professor 2 10%
Student > Doctoral Student 1 5%
Student > Master 1 5%
Other 3 15%
Unknown 9 45%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 20%
Agricultural and Biological Sciences 4 20%
Medicine and Dentistry 2 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Unknown 9 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 May 2016.
All research outputs
#15,376,252
of 22,875,477 outputs
Outputs from Molecular Cancer
#1,048
of 1,725 outputs
Outputs of similar age
#201,993
of 326,829 outputs
Outputs of similar age from Molecular Cancer
#14
of 25 outputs
Altmetric has tracked 22,875,477 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,829 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.