↓ Skip to main content

Rickettsia parkeri colonization in Amblyomma maculatum: the role of superoxide dismutases

Overview of attention for article published in Parasites & Vectors, May 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rickettsia parkeri colonization in Amblyomma maculatum: the role of superoxide dismutases
Published in
Parasites & Vectors, May 2016
DOI 10.1186/s13071-016-1579-1
Pubmed ID
Authors

Gary Crispell, Khemraj Budachetri, Shahid Karim

Abstract

The Gulf Coast tick (Amblyomma maculatum) is an arthropod vector of Rickettsia parkeri, the causative agent of American boutonneuse fever and an infectious agent of public health significance. In this study, we evaluated the biological significance of the superoxide dismutases (SODs) of A. maculatum in hematophagy and R. parkeri colonization within the tick host. An RNA interference approach was used to measure the functional roles of tick SODs (Cu/Zn-SOD and Mn-SOD) in R. parkeri colonization of the tick vector. Total microbial load, R. parkeri infection rate, and compensatory mechanisms by tick genes were examined using quantitative polymerase chain reaction (PCR) and quantitative reverse-transcriptase PCR assays. SOD enzymatic activity assays and malondialdehyde (MDA) lipid peroxidation were employed to determine the redox states in the tick tissues. Knockdown of the Cu/Zn-SOD gene caused the upregulation of Mn-SOD in transcript levels. Single and dual knockdowns of the SOD genes caused an increase in MDA lipid peroxidation while SOD enzymatic activities did not show a significant change. Mn-SOD knockdown resulted in a substantial increase in the microbial load; however, Cu/Zn-SOD transcript depletion prompted an upsurge in the midgut bacterial load, and significantly decreased the bacterial load in salivary gland tissues. Additionally, Cu/Zn-SOD transcript silencing led to significantly fewer R. parkeri DNA copy numbers in both tick tissues (midguts and salivary glands). SOD enzymes play an important function in the regulation of bacterial communities associated with tick vectors and also in the defense mechanisms against the damage caused by reactive oxygen species within the tick. Knockdown experiments increased the levels of total oxidative stress in ticks, revealing the interplay between SOD isozymes that results in the transcriptional regulation of tick antioxidants. Moreover, the tick's Cu/Zn-SOD aids in the colonization of R. parkeri in tick tissues providing evidence of A. maculatum's vectorial success for a spotted fever group rickettsial pathogen.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Brazil 1 3%
Unknown 27 93%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 21%
Student > Ph. D. Student 6 21%
Researcher 3 10%
Student > Doctoral Student 2 7%
Student > Bachelor 2 7%
Other 5 17%
Unknown 5 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 41%
Biochemistry, Genetics and Molecular Biology 5 17%
Veterinary Science and Veterinary Medicine 2 7%
Immunology and Microbiology 1 3%
Neuroscience 1 3%
Other 0 0%
Unknown 8 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 May 2016.
All research outputs
#18,461,618
of 22,875,477 outputs
Outputs from Parasites & Vectors
#4,235
of 5,473 outputs
Outputs of similar age
#250,129
of 333,300 outputs
Outputs of similar age from Parasites & Vectors
#149
of 183 outputs
Altmetric has tracked 22,875,477 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,473 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,300 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 183 others from the same source and published within six weeks on either side of this one. This one is in the 6th percentile – i.e., 6% of its contemporaries scored the same or lower than it.