↓ Skip to main content

Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium

Overview of attention for article published in BMC Genomics, May 2016
Altmetric Badge

Mentioned by

twitter
3 X users

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium
Published in
BMC Genomics, May 2016
DOI 10.1186/s12864-016-2733-z
Pubmed ID
Authors

Hua Liu, Ming Sun, Dongliang Du, Huitang Pan, Tangren Cheng, Jia Wang, Qixiang Zhang, Yike Gao

Abstract

Chrysanthemum morifolium is one of the most important global cut flower and pot plants, and has been cultivated worldwide. However, limited genomic resources are available and the molecular mechanisms involved in the two morphologically distinct floret developmental cycles in chrysanthemum remain unclear. The transcriptomes of chrysanthemum ray florets, disc florets and leaves were sequenced using Illumina paired-end sequencing technology. In total, 16.9 G reads were assembled into 93,138 unigenes with an average length of 738 bp, of which 44,364 unigenes showed similarity to known proteins in the Swissprot or NCBI non-redundant protein databases. Additionally, 26,320, 22,304 and 13,949 unigenes were assigned to 54 gene ontology (GO) categories, 25 EuKaryotic Orthologous Groups (KOG) categories, and 280 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 1863 differentially expressed genes (DEGs) (1210 up-regulated and 653 down-regulated) were identified between ray florets and disc florets, including genes encoding transcription factors and protein kinases. GO and KEGG pathway enrichment analyses were performed on the DEGs to identify differences in the biological processes and pathways between ray florets and disc florets. The important regulatory genes controlling flower development and flower organ determination, as well as important functional genes in the anthocyanin biosynthetic pathway, were identified, of which two leucoanthocyanidin dioxygenase-encoding genes showed specific expression in ray florets. Lastly, reverse transcription quantitative PCR was conducted to validate the DEGs identified in our study. Comparative transcriptome analysis revealed significant differences in patterns of gene expression and signaling pathways between ray florets and disc florets in Chrysanthemum morifolium. This study provided the first step to understanding the molecular mechanism of the differential development of ray florets and disc florets in chrysanthemum, and also provided valuable genomic resources for candidate genes applicable for the breeding of novel varieties in chrysanthemum.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 26%
Student > Ph. D. Student 7 21%
Student > Doctoral Student 4 12%
Student > Master 4 12%
Professor > Associate Professor 2 6%
Other 3 9%
Unknown 5 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 50%
Biochemistry, Genetics and Molecular Biology 6 18%
Engineering 2 6%
Chemistry 1 3%
Computer Science 1 3%
Other 0 0%
Unknown 7 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 May 2016.
All research outputs
#17,806,995
of 22,875,477 outputs
Outputs from BMC Genomics
#7,580
of 10,665 outputs
Outputs of similar age
#237,530
of 335,850 outputs
Outputs of similar age from BMC Genomics
#155
of 197 outputs
Altmetric has tracked 22,875,477 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,665 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,850 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 197 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.