↓ Skip to main content

A missense mutation in TUBD1 is associated with high juvenile mortality in Braunvieh and Fleckvieh cattle

Overview of attention for article published in BMC Genomics, May 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

news
4 news outlets
twitter
2 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A missense mutation in TUBD1 is associated with high juvenile mortality in Braunvieh and Fleckvieh cattle
Published in
BMC Genomics, May 2016
DOI 10.1186/s12864-016-2742-y
Pubmed ID
Authors

Hermann Schwarzenbacher, Johann Burgstaller, Franz R. Seefried, Christine Wurmser, Monika Hilbe, Simone Jung, Christian Fuerst, Nora Dinhopl, Herbert Weissenböck, Birgit Fuerst-Waltl, Marlies Dolezal, Reinhard Winkler, Oskar Grueter, Ulrich Bleul, Thomas Wittek, Ruedi Fries, Hubert Pausch

Abstract

Haplotypes with reduced or missing homozygosity may harbor deleterious alleles that compromise juvenile survival. A scan for homozygous haplotype deficiency revealed a short segment on bovine chromosome 19 (Braunvieh haplotype 2, BH2) that was associated with high juvenile mortality in Braunvieh cattle. However, the molecular genetic underpinnings and the pathophysiology of BH2 remain to be elucidated. The frequency of BH2 was 6.5 % in 8,446 Braunvieh animals from the national bovine genome databases. Both perinatal and juvenile mortality of BH2 homozygous calves were higher than the average in Braunvieh cattle resulting in a depletion of BH2 homozygous adult animals (P = 9.3x10(-12)). The analysis of whole-genome sequence data from 54 Braunvieh animals uncovered a missense mutation in TUBD1 (rs383232842, p.H210R) that was compatible with recessive inheritance of BH2. The availability of sequence data of 236 animals from diverse bovine populations revealed that the missense mutation also segregated at a low frequency (1.7 %) in the Fleckvieh breed. A validation study in 37,314 Fleckvieh animals confirmed high juvenile mortality of homozygous calves (P = 2.2x10(-15)). Our findings show that the putative disease allele is located on an ancestral haplotype that segregates in Braunvieh and Fleckvieh cattle. To unravel the pathophysiology of BH2, six homozygous animals were examined at the animal clinic. Clinical and pathological findings revealed that homozygous calves suffered from chronic airway disease possibly resulting from defective cilia in the respiratory tract. A missense mutation in TUBD1 is associated with high perinatal and juvenile mortality in Braunvieh and Fleckvieh cattle. The mutation is located on a common haplotype likely originating from an ancient ancestor of Braunvieh and Fleckvieh cattle. Our findings demonstrate for the first time that deleterious alleles may segregate across closed cattle breeds without recent admixture. Homozygous calves suffer from chronic airway disease resulting in poor growth performance and high juvenile mortality. The respiratory manifestations resemble key features of diseases resulting from impaired function of airway cilia.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Denmark 1 2%
Unknown 44 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 27%
Student > Ph. D. Student 8 18%
Student > Bachelor 3 7%
Student > Master 3 7%
Other 2 4%
Other 5 11%
Unknown 12 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 38%
Biochemistry, Genetics and Molecular Biology 6 13%
Veterinary Science and Veterinary Medicine 5 11%
Medicine and Dentistry 2 4%
Unspecified 1 2%
Other 2 4%
Unknown 12 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 35. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 July 2016.
All research outputs
#969,040
of 22,875,477 outputs
Outputs from BMC Genomics
#153
of 10,665 outputs
Outputs of similar age
#19,751
of 335,850 outputs
Outputs of similar age from BMC Genomics
#4
of 197 outputs
Altmetric has tracked 22,875,477 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,665 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,850 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 197 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.