↓ Skip to main content

Salinity stress induces the production of 2-(2-phenylethyl)chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli

Overview of attention for article published in BMC Plant Biology, May 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Salinity stress induces the production of 2-(2-phenylethyl)chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli
Published in
BMC Plant Biology, May 2016
DOI 10.1186/s12870-016-0803-7
Pubmed ID
Authors

Xiaohui Wang, Bowen Gao, Xiao Liu, Xianjuan Dong, Zhongxiu Zhang, Huiyan Fan, Le Zhang, Juan Wang, Shepo Shi, Pengfei Tu

Abstract

Agarwood, is a resinous portion derived from Aquilaria sinensis, has been widely used in traditional medicine and incense. 2-(2-phenylethyl)chromones are principal components responsible for the quality of agarwood. However, the molecular basis of 2-(2-phenylethyl)chromones biosynthesis and regulation remains almost unknown. Our research indicated that salt stress induced production of several of 2-(2-phenylethyl)chromones in A. sinensis calli. Transcriptome analysis of A. sinensis calli treated with NaCl is required to further facilitate the multiple signal pathways in response to salt stress and to understand the mechanism of 2-(2-phenylethyl)chromones biosynthesis. Forty one 2-(2-phenylethyl)chromones were identified from NaCl-treated A. sinensis calli. 93 041 unigenes with an average length of 1562 nt were generated from the control and salt-treated calli by Illmunina sequencing after assembly, and the unigenes were annotated by comparing with the public databases including NR, Swiss-Prot, KEGG, COG, and GO database. In total, 18 069 differentially expressed transcripts were identified by the transcriptome comparisons on the control calli and calli induced by 24 h or 120 h salinity stress. Numerous genes involved in signal transduction pathways including the genes responsible for hormone signal transduction, receptor-like kinases, MAPK cascades, Ca(2+) signal transduction, and transcription factors showed clear differences between the control calli and NaCl-treated calli. Furthermore, our data suggested that the genes annotated as chalcone synthases and O-methyltransferases may contribute to the biosynthesis of 2-(2-phenylethyl)chromones. Salinity stress could induce the production of 41 2-(2-phenylethyl)chromones in A. sinensis calli. We conducted the first deep-sequencing transcriptome profiling of A. sinensis under salt stress and observed a large number of differentially expressed genes in response to salinity stress. Moreover, salt stress induced dynamic changes in transcript abundance for novel classes of responsive genes involved in signal transduction, including the genes responsible for hormone signal transduction, receptor-like kinases, MAPK cascades, Ca(2+) signal transduction, and transcription factors. This study will aid in selecting the target genes to genetically regulate A. sinensis salt-stress signal transduction and elucidating the biosynthesis of 2-(2-phenylethyl)chromones under salinity stress.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 3%
Unknown 29 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 27%
Researcher 5 17%
Student > Master 4 13%
Student > Doctoral Student 3 10%
Student > Bachelor 2 7%
Other 4 13%
Unknown 4 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 47%
Biochemistry, Genetics and Molecular Biology 5 17%
Chemistry 2 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Medicine and Dentistry 1 3%
Other 1 3%
Unknown 6 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 May 2016.
All research outputs
#20,330,976
of 22,875,477 outputs
Outputs from BMC Plant Biology
#2,528
of 3,263 outputs
Outputs of similar age
#289,565
of 337,040 outputs
Outputs of similar age from BMC Plant Biology
#50
of 63 outputs
Altmetric has tracked 22,875,477 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,263 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,040 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.