↓ Skip to main content

Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway

Overview of attention for article published in Particle and Fibre Toxicology, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
68 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway
Published in
Particle and Fibre Toxicology, June 2016
DOI 10.1186/s12989-016-0138-4
Pubmed ID
Authors

Manuela Polimeni, Giulia Rossana Gulino, Elena Gazzano, Joanna Kopecka, Arianna Marucco, Ivana Fenoglio, Federico Cesano, Luisa Campagnolo, Andrea Magrini, Antonio Pietroiusti, Dario Ghigo, Elisabetta Aldieri

Abstract

Multi-walled carbon nanotubes (MWCNT) are currently under intense toxicological investigation due to concern on their potential health effects. Current in vitro and in vivo data indicate that MWCNT exposure is strongly associated with lung toxicity (inflammation, fibrosis, granuloma, cancer and airway injury) and their effects might be comparable to asbestos-induced carcinogenesis. Although fibrosis is a multi-origin disease, epithelial-mesenchymal transition (EMT) is recently recognized as an important pathway in cell transformation. It is known that MWCNT exposure induces EMT through the activation of the TGF-β/Smad signalling pathway thus promoting pulmonary fibrosis, but the molecular mechanisms involved are not fully understood. In the present work we propose a new mechanism involving a TGF-β-mediated signalling pathway. Human bronchial epithelial cells were incubated with two different MWCNT samples at various concentrations for up to 96 h and several markers of EMT were investigated. Quantitative real time PCR, western blot, immunofluorescent staining and gelatin zymographies were performed to detect the marker protein alterations. ELISA was performed to evaluate TGF-β production. Experiments with neutralizing anti-TGF-β antibody, specific inhibitors of GSK-3β and Akt and siRNA were carried out in order to confirm their involvement in MWCNT-induced EMT. In vivo experiments of pharyngeal aspiration in C57BL/6 mice were also performed. Data were analyzed by a one-way ANOVA with Tukey's post-hoc test. Fully characterized MWCNT (mean length < 5 μm) are able to induce EMT in an in vitro human model (BEAS-2B cells) after long-term incubation at sub-cytotoxic concentrations. MWCNT stimulate TGF-β secretion, Akt activation and GSK-3β inhibition, which induces nuclear accumulation of SNAIL-1 and its transcriptional activity, thus contributing to switch on the EMT program. Moreover, a significant increment of nuclear β-catenin - due to E-cadherin repression and following translocation to nucleus - likely reinforces signalling for EMT promotion. In vivo results supported the occurrence of pulmonary fibrosis following MWCNT exposure. We demonstrate a new molecular mechanism of MWCNT-mediated EMT, which is Smad-independent and involves TGF-β and its intracellular effectors Akt/GSK-3β that activate the SNAIL-1 signalling pathway. This finding suggests potential novel targets in the development of therapeutic and preventive approaches.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Norway 1 2%
Unknown 58 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 17%
Student > Ph. D. Student 8 14%
Student > Doctoral Student 5 8%
Other 5 8%
Student > Bachelor 4 7%
Other 13 22%
Unknown 14 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 14%
Agricultural and Biological Sciences 8 14%
Medicine and Dentistry 6 10%
Pharmacology, Toxicology and Pharmaceutical Science 5 8%
Environmental Science 3 5%
Other 11 19%
Unknown 18 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 March 2017.
All research outputs
#14,853,520
of 22,875,477 outputs
Outputs from Particle and Fibre Toxicology
#341
of 561 outputs
Outputs of similar age
#201,478
of 339,120 outputs
Outputs of similar age from Particle and Fibre Toxicology
#15
of 20 outputs
Altmetric has tracked 22,875,477 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 561 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.2. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,120 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.