↓ Skip to main content

Breast cancer subtype predictors revisited: from consensus to concordance?

Overview of attention for article published in BMC Medical Genomics, June 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
28 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Breast cancer subtype predictors revisited: from consensus to concordance?
Published in
BMC Medical Genomics, June 2016
DOI 10.1186/s12920-016-0185-6
Pubmed ID
Authors

Herman MJ. Sontrop, Marcel JT. Reinders, Perry D. Moerland

Abstract

At the molecular level breast cancer comprises a heterogeneous set of subtypes associated with clear differences in gene expression and clinical outcomes. Single sample predictors (SSPs) are built via a two-stage approach consisting of clustering and subtype predictor construction based on the cluster labels of individual cases. SSPs have been criticized because their subtype assignments for the same samples were only moderately concordant (Cohen's κ<0.6). We propose a semi-supervised approach where for five datasets, consensus sets were constructed consisting of those samples that were concordantly subtyped by a number of different predictors. Next, nine subtype predictors - three SSPs, three subtype classification models (SCMs) and three novel rule-based predictors based on the St. Gallen surrogate intrinsic subtype definitions (STGs) - were constructed on the five consensus sets and their associated consensus subtype labels. The predictors were validated on a compendium of over 4,000 uniformly preprocessed Affymetrix microarrays. Concordance between subtype predictors was assessed using Cohen's kappa statistic. In this standardized setup, subtype predictors of the same type (either SCM, SSP, or STG) but with a different gene list and/or consensus training set were associated with almost perfect levels of agreement (median κ>0.8). Interestingly, for a given predictor type a change in consensus set led to higher concordance than a change to another gene list. The more challenging scenario where the predictor type, gene list and training set were all different resulted in predictors with only substantial levels of concordance (median κ=0.74) on independent validation data. Our results demonstrate that for a given subtype predictor type stringent standardization of the preprocessing stage, combined with carefully devised consensus training sets, leads to predictors that show almost perfect levels of concordance. However, predictors of a different type are only substantially concordant, despite reaching almost perfect levels of concordance on training data.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 25%
Student > Master 5 18%
Professor 2 7%
Student > Doctoral Student 2 7%
Researcher 2 7%
Other 2 7%
Unknown 8 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 21%
Engineering 3 11%
Agricultural and Biological Sciences 2 7%
Computer Science 2 7%
Medicine and Dentistry 2 7%
Other 3 11%
Unknown 10 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 June 2016.
All research outputs
#20,332,117
of 22,876,619 outputs
Outputs from BMC Medical Genomics
#1,004
of 1,224 outputs
Outputs of similar age
#291,913
of 339,345 outputs
Outputs of similar age from BMC Medical Genomics
#9
of 9 outputs
Altmetric has tracked 22,876,619 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,224 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,345 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one.