↓ Skip to main content

Vicious circle between progressive right ventricular dilatation and pulmonary regurgitation in patients after tetralogy of Fallot repair? Right heart enlargement promotes flow reversal in the left…

Overview of attention for article published in Critical Reviews in Diagnostic Imaging, June 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (63rd percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Vicious circle between progressive right ventricular dilatation and pulmonary regurgitation in patients after tetralogy of Fallot repair? Right heart enlargement promotes flow reversal in the left pulmonary artery
Published in
Critical Reviews in Diagnostic Imaging, June 2016
DOI 10.1186/s12968-016-0254-1
Pubmed ID
Authors

Atsuko Kato, Christian Drolet, Shi-Joon Yoo, Andrew N. Redington, Lars Grosse-Wortmann

Abstract

The left pulmonary artery (LPA) contributes more than the right (RPA) to total pulmonary regurgitation (PR) in patients after tetralogy of Fallot (TOF) repair, but the mechanism of this difference is not well understood. This study aimed to analyze the interplay between heart and lung size, mediastinal geometry, and differential PR. Forty-eight Cardiovascular Magnetic Resonance (CMR) studies in patients after TOF repair were analyzed. In addition to the routine blood flow and ventricular volume quantification cardiac angle between the thoracic anterior-posterior line and the interventricular septum, right and left lung areas as well as right and left hemithorax areas were measured on an axial image. Statistical analysis was performed to compare flow parameters between RPA and LPA and to assess correlation among right ventricular volume, pulmonary blood flow parameters and lung area. There was no difference between LPA and RPA diameters. The LPA showed significantly less total forward flow (2.49 ± 0.87 L/min/m(2) vs 2.86 ± 0.89 L/min/m(2); p = 0.02), smaller net forward flow (1.40 ± 0.51 vs 1.89 ± 0.60 mL/min/m(2); p = <0.001), and greater regurgitant fraction (RF) (34 ± 10 % vs 43 ± 12 %; p = 0.001) than the RPA. There was no difference in regurgitant flow volume between RPA and LPA (p = 0.29). Indexed right ventricular end-diastolic volume (RVEDVi) correlated with LPA RF (R = 0.48, p < 0.001), but not with RPA RF (p = 0.09). Larger RVEDVi correlated with a more leftward cardiac axis (R = 0.46, p < 0.001) and with smaller left lung area (R = -0.58, p < 0.001). LPA RF, but not RPA RF, correlated inversely with left lung area (R = -0.34, p = 0.02). The follow-up CMRs in 20 patients showed a correlation of the rate of RV enlargement with the rates of LPA RF worsening (R = 0.50, p = 0.03), and of increasing left lung compression (R = -0.55, p = 0.012). An enlarged and levorotated heart is associated with left lung compression and impaired flow into the left lung.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 32 97%

Demographic breakdown

Readers by professional status Count As %
Other 7 21%
Researcher 6 18%
Student > Ph. D. Student 5 15%
Student > Master 4 12%
Student > Postgraduate 3 9%
Other 5 15%
Unknown 3 9%
Readers by discipline Count As %
Medicine and Dentistry 25 76%
Psychology 1 3%
Social Sciences 1 3%
Engineering 1 3%
Unknown 5 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 June 2016.
All research outputs
#8,400,315
of 25,711,518 outputs
Outputs from Critical Reviews in Diagnostic Imaging
#676
of 1,386 outputs
Outputs of similar age
#125,279
of 356,874 outputs
Outputs of similar age from Critical Reviews in Diagnostic Imaging
#22
of 23 outputs
Altmetric has tracked 25,711,518 research outputs across all sources so far. This one has received more attention than most of these and is in the 66th percentile.
So far Altmetric has tracked 1,386 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 356,874 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.