↓ Skip to main content

Evolutionary consequences of polyploidy in prokaryotes and the origin of mitosis and meiosis

Overview of attention for article published in Biology Direct, June 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

news
1 news outlet
twitter
18 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
89 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evolutionary consequences of polyploidy in prokaryotes and the origin of mitosis and meiosis
Published in
Biology Direct, June 2016
DOI 10.1186/s13062-016-0131-8
Pubmed ID
Authors

Alexander V. Markov, Ilya S. Kaznacheev

Abstract

The origin of eukaryote-specific traits such as mitosis and sexual reproduction remains disputable. There is growing evidence that both mitosis and eukaryotic sex (i.e., the alternation of syngamy and meiosis) may have already existed in the basal eukaryotes. The mating system of the halophilic archaeon Haloferax volcanii probably represents an intermediate stage between typical prokaryotic and eukaryotic sex. H. volcanii is highly polyploid, as well as many other Archaea. Here, we use computer simulation to explore genetic and evolutionary outcomes of polyploidy in amitotic prokaryotes and its possible role in the origin of mitosis, meiosis and eukaryotic sex. Modeling suggests that polyploidy can confer strong short-term evolutionary advantage to amitotic prokaryotes. However, it also promotes the accumulation of recessive deleterious mutations and the risk of extinction in the long term, especially in highly mutagenic environment. There are several possible strategies that amitotic polyploids can use in order to reduce the genetic costs of polyploidy while retaining its benefits. Interestingly, most of these strategies resemble different components or aspects of eukaryotic sex. They include asexual ploidy cycles, equalization of genome copies by gene conversion, high-frequency lateral gene transfer between relatives, chromosome exchange coupled with homologous recombination, and the evolution of more accurate chromosome distribution during cell division (mitosis). Acquisition of mitosis by an amitotic polyploid results in chromosome diversification and specialization. Ultimately, it transforms a polyploid cell into a functionally monoploid one with multiple unique, highly redundant chromosomes. Specialization of chromosomes makes the previously evolved modes of promiscuous chromosome shuffling deleterious. This can result in selective pressure to develop accurate mechanisms of homolog pairing, and, ultimately, meiosis. Emergence of mitosis and the first evolutionary steps towards eukaryotic sex could have taken place in the ancestral polyploid, amitotic proto-eukaryotes, as they were struggling to survive in the highly mutagenic environment of the Early Proterozoic shallow water microbial communities, through the succession of the following stages: (1) acquisition of high-frequency between-individual genetic exchange coupled with homologous recombination; (2) acquisition of mitosis, followed by rapid chromosome diversification and specialization; (3) evolution of homolog synapsis and meiosis. Additional evidence compatible with this scenario includes mass acquisition of new families of paralogous genes by the basal eukaryotes, and recently discovered correlation between polyploidy and the presence of histones in Archaea. This article was reviewed by Eugene Koonin, Uri Gophna and Armen Mulkidjanian. For the full reviews, please go to the Reviewers' comments section.

X Demographics

X Demographics

The data shown below were collected from the profiles of 18 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 89 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Spain 1 1%
Germany 1 1%
Unknown 86 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 21%
Researcher 14 16%
Student > Bachelor 11 12%
Student > Master 8 9%
Professor 6 7%
Other 18 20%
Unknown 13 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 30 34%
Agricultural and Biological Sciences 28 31%
Immunology and Microbiology 4 4%
Medicine and Dentistry 4 4%
Environmental Science 2 2%
Other 5 6%
Unknown 16 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 July 2016.
All research outputs
#1,768,671
of 23,674,309 outputs
Outputs from Biology Direct
#64
of 496 outputs
Outputs of similar age
#33,012
of 342,747 outputs
Outputs of similar age from Biology Direct
#2
of 6 outputs
Altmetric has tracked 23,674,309 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 496 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.8. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,747 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 4 of them.