↓ Skip to main content

Developmental interneuron subtype deficits after targeted loss of Arx

Overview of attention for article published in BMC Neuroscience, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Developmental interneuron subtype deficits after targeted loss of Arx
Published in
BMC Neuroscience, June 2016
DOI 10.1186/s12868-016-0265-8
Pubmed ID
Authors

Eric D. Marsh, MacLean Pancoast Nasrallah, Caroline Walsh, Kaitlin A. Murray, C. Nicole Sunnen, Almedia McCoy, Jeffrey A. Golden

Abstract

Aristaless-related homeobox (ARX) is a paired-like homeodomain transcription factor that functions primarily as a transcriptional repressor and has been implicated in neocortical interneuron specification and migration. Given the role interneurons appear to play in numerous human conditions including those associated with ARX mutations, it is essential to understand the consequences of mutations in this gene on neocortical interneurons. Previous studies have examined the effect of germline loss of Arx, or targeted mutations in Arx, on interneuron development. We now present the effect of conditional loss of Arx on interneuron development. To further elucidate the role of Arx in forebrain development we performed a series of anatomical and developmental studies to determine the effect of conditional loss of Arx specifically from developing interneurons in the neocortex and hippocampus. Analysis and cell counts were performed from mouse brains using immunohistochemical and in situ hybridization assays at 4 times points across development. Our data indicate that early in development, instead of a loss of ventral precursors, there is a shift of these precursors to more ventral locations, a deficit that persists in the adult nervous system. The result of this developmental shift is a reduced number of interneurons (all subtypes) at early postnatal and later time periods. In addition, we find that X inactivation is stochastic, and occurs at the level of the neural progenitors. These data provide further support that the role of Arx in interneuron development is to direct appropriate migration of ventral neuronal precursors into the dorsal cortex and that the loss of Arx results in a failure of interneurons to reach the cortex and thus a deficiency in interneurons.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 22%
Researcher 8 20%
Student > Master 6 15%
Student > Bachelor 4 10%
Student > Doctoral Student 2 5%
Other 5 12%
Unknown 7 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 27%
Neuroscience 9 22%
Medicine and Dentistry 7 17%
Social Sciences 2 5%
Biochemistry, Genetics and Molecular Biology 1 2%
Other 2 5%
Unknown 9 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 August 2017.
All research outputs
#17,807,987
of 22,877,793 outputs
Outputs from BMC Neuroscience
#818
of 1,247 outputs
Outputs of similar age
#245,687
of 345,197 outputs
Outputs of similar age from BMC Neuroscience
#17
of 35 outputs
Altmetric has tracked 22,877,793 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,247 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,197 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.