↓ Skip to main content

Aldehyde Dehydrogenase-2 Deficiency Aggravates Cardiac Dysfunction Elicited by Endoplasmic Reticulum Stress Induction

Overview of attention for article published in Molecular Medicine, March 2012
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
2 X users
patent
1 patent
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aldehyde Dehydrogenase-2 Deficiency Aggravates Cardiac Dysfunction Elicited by Endoplasmic Reticulum Stress Induction
Published in
Molecular Medicine, March 2012
DOI 10.2119/molmed.2011.00466
Pubmed ID
Authors

Jianquan Liao, Aijun Sun, Yeqing Xie, Toyoshi Isse, Toshihiro Kawamoto, Yunzeng Zou, Junbo Ge

Abstract

Mitochondrial aldehyde dehydrogenase-2 (ALDH2) has been characterized as an important mediator of endogenous cytoprotection in the heart. This study was designed to examine the role of ALDH2 knockout (KO) in the regulation of cardiac function after endoplasmic reticulum (ER) stress. Wild-type (WT) and ALDH2 KO mice were subjected to a tunicamycin challenge, and the echocardiographic property was examined. Protein levels of six items--78 kDa glucose-regulated protein (GRP78), phosphorylation of eukaryotic initiation factor 2 subunit α (p-eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP), phosphorylation of Akt, p47(phox) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 4-hydroxynonenal--were determined by using Western blot analysis. Cytotoxicity and apoptosis were estimated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay and caspase-3 activity, respectively. ALDH2 deficiency exacerbated cardiac contractile dysfunction and promoted ER stress after ER stress induction, manifested by the changes of ejection fraction and fractional shortening. In vitro study revealed that tunicamycin significantly upregulated the levels of GRP78, p-eIF2α, CHOP, p47(phox) NADPH oxidase and 4-hydroxynonenal, which was exacerbated by ALDH2 knockdown and abolished by ALDH2 overexpression, respectively. Overexpression of ALDH2 abrogated tunicamycin-induced dephosphorylation Akt. Inhibition of phosphatidylinositol 3-kinase using LY294002 did not affect ALDH2-conferred protection against ER stress, although LY294002 reversed the antiapoptotic action of ALDH2 associated with p47(phox) NADPH oxidase. These results suggest a pivotal role of ALDH2 in the regulation of ER stress and ER stress-induced apoptosis. The protective role of ALDH2 against ER stress-induced cell death was probably mediated by Akt via a p47(phox) NADPH oxidase-dependent manner. These findings indicate the critical role of ALDH2 in the pathogenesis of ER stress in heart disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 30%
Researcher 3 11%
Student > Bachelor 3 11%
Student > Master 3 11%
Student > Doctoral Student 1 4%
Other 5 19%
Unknown 4 15%
Readers by discipline Count As %
Medicine and Dentistry 6 22%
Biochemistry, Genetics and Molecular Biology 6 22%
Agricultural and Biological Sciences 5 19%
Mathematics 1 4%
Chemical Engineering 1 4%
Other 5 19%
Unknown 3 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 January 2023.
All research outputs
#4,644,585
of 23,515,785 outputs
Outputs from Molecular Medicine
#185
of 1,174 outputs
Outputs of similar age
#29,488
of 158,137 outputs
Outputs of similar age from Molecular Medicine
#5
of 20 outputs
Altmetric has tracked 23,515,785 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,174 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.5. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 158,137 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.