↓ Skip to main content

Acute lung injury induced by whole gastric fluid: hepatic acute phase response contributes to increase lung antiprotease protection

Overview of attention for article published in Respiratory Research, June 2016
Altmetric Badge

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Acute lung injury induced by whole gastric fluid: hepatic acute phase response contributes to increase lung antiprotease protection
Published in
Respiratory Research, June 2016
DOI 10.1186/s12931-016-0379-7
Pubmed ID
Authors

Pedro Ayala, Manuel Meneses, Pablo Olmos, Rebeca Montalva, Karla Droguett, Mariana Ríos, Gisella Borzone

Abstract

Gastric contents aspiration in humans is a risk factor for severe respiratory failure with elevated mortality. Although aspiration-induced local lung inflammation has been studied in animal models, little is known about extrapulmonary effects of aspiration. We investigated whether a single orotracheal instillation of whole gastric fluid elicits a liver acute phase response and if this response contributes to enrich the alveolar spaces with proteins having antiprotease activity. In anesthetized Sprague-Dawley rats receiving whole gastric fluid, we studied at different times after instillation (4 h -7 days): changes in blood cytokines and acute phase proteins (fibrinogen and the antiproteases alpha1-antitrypsin and alpha2-macroglobulin) as well as liver mRNA expression of the two antiproteases. The impact of the systemic changes on lung antiprotease defense was evaluated by measuring levels and bioactivity of antiproteases in broncho-alveolar lavage fluid (BALF). Markers of alveolar-capillary barrier derangement were also studied. Non-parametric ANOVA (Kruskall-Wallis) and linear regression analysis were used. Severe peribronchiolar injury involving edema, intra-alveolar proteinaceous debris, hemorrhage and PMNn cell infiltration was seen in the first 24 h and later resolved. Despite a large increase in several lung cytokines, only IL-6 was found elevated in blood, preceding increased liver expression and blood concentration of both antiproteases. These changes, with an acute phase response profile, were significantly larger for alpha2-macroglobulin (40-fold increment in expression with 12-fold elevation in blood protein concentration) than for alpha1-antitrypsin (2-3 fold increment in expression with 0.5-fold elevation in blood protein concentration). Both the increment in capillary-alveolar antiprotease concentration gradient due to increased antiprotease liver synthesis and a timely-associated derangement of the alveolar-capillary barrier induced by aspiration, contributed a 58-fold and a 190-fold increase in BALF alpha1-antitrypsin and alpha2-macroglobulin levels respectively (p < 0.001). Gastric contents-induced acute lung injury elicits a liver acute phase response characterized by increased mRNA expression of antiproteases and elevation of blood antiprotease concentrations. Hepatic changes act in concert with derangement of the alveolar capillary barrier to enrich alveolar spaces with antiproteases. These findings may have significant implications decreasing protease burden, limiting injury in this and other models of acute lung injury and likely, in recurrent aspiration.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 18%
Researcher 3 18%
Student > Doctoral Student 2 12%
Lecturer 1 6%
Other 1 6%
Other 4 24%
Unknown 3 18%
Readers by discipline Count As %
Medicine and Dentistry 4 24%
Biochemistry, Genetics and Molecular Biology 3 18%
Agricultural and Biological Sciences 2 12%
Nursing and Health Professions 2 12%
Psychology 1 6%
Other 1 6%
Unknown 4 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 June 2016.
All research outputs
#17,286,645
of 25,374,917 outputs
Outputs from Respiratory Research
#2,216
of 3,062 outputs
Outputs of similar age
#237,343
of 368,451 outputs
Outputs of similar age from Respiratory Research
#40
of 47 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 368,451 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.