↓ Skip to main content

Immunohistochemical and ultrastructural properties of the larval ciliary band-associated strand in the sea urchin Hemicentrotus pulcherrimus

Overview of attention for article published in Frontiers in Zoology, June 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Immunohistochemical and ultrastructural properties of the larval ciliary band-associated strand in the sea urchin Hemicentrotus pulcherrimus
Published in
Frontiers in Zoology, June 2016
DOI 10.1186/s12983-016-0159-8
Pubmed ID
Authors

Hideki Katow, Tomoko Katow, Hiromi Yoshida, Masato Kiyomoto, Isao Uemura

Abstract

The swimming activity of sea urchin larvae is dependent on the ciliary band (CB) on the larval surface and is regulated by several neurotransmitters, including serotonin (5HT), dopamine, and γ-aminobutyric acid (GABA). However, the CB signal transmission mechanism remains unknown. The present study investigated the structural relationship between the CB and external signal receptors by immunohistochemical and transmission electron microscopic analyses of sea urchin, Hemicentrotus pulcherrimus, larvae. Glutamate decarboxylase (GAD; GABA synthetase) was detected in a strand of multiple cells along the circumoral CB in 6-arm plutei. The GAD-expressing strand was closely associated with the CB on the oral ectoderm side. The ciliary band-associated strand (CBAS) also expressed the 5HT receptor (5HThpr) and encephalopsin (ECPN) throughout the cytoplasm and comprised 1- to 2-μm diameter axon-like long stretched regions and sporadic 6- to 7-μm diameter bulbous nucleated regions (perikarya) that protruded into the oral ectoderm side. Besides the laterally polarized morphology of the CBAS cells, Epith-2, which is the epithelial lateral cell surface-specific protein of the sea urchin embryo and larva, was expressed exclusively by perikarya but not by the axon-like regions. The CBAS exposed its narrow apical surface on the larval epithelium between the CB and squamous cells and formed adherens junctions (AJs) on the apical side between them. Despite the presence of the CBAS axon-like regions, tubulins, such as α-, β-, and acetylated α-tubulins, were not detected. However, the neuroendocrine cell marker protein synaptophysin was detected in the axon-like regions and in bouton-like protrusions that contained numerous small ultrastructural vesicles. The unique morphology of the CBAS in the sea urchin larva epithelium had not been reported. The CBAS expresses a remarkable number of receptors to environmental stimuli and proteins that are probably involved in signal transmission to the CB. The properties of the CBAS explain previous reports that larval swimming is triggered by environmental stimuli and suggest crosstalk among receptors and potential plural sensory functions of the CBAS.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 25%
Researcher 3 15%
Student > Master 3 15%
Other 2 10%
Professor 1 5%
Other 2 10%
Unknown 4 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 40%
Biochemistry, Genetics and Molecular Biology 4 20%
Medicine and Dentistry 2 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Neuroscience 1 5%
Other 0 0%
Unknown 4 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 June 2016.
All research outputs
#20,333,181
of 22,877,793 outputs
Outputs from Frontiers in Zoology
#612
of 652 outputs
Outputs of similar age
#282,528
of 326,206 outputs
Outputs of similar age from Frontiers in Zoology
#13
of 15 outputs
Altmetric has tracked 22,877,793 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 652 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,206 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.