↓ Skip to main content

Construction of a high-density, high-quality genetic map of cultivated lotus (Nelumbo nucifera) using next-generation sequencing

Overview of attention for article published in BMC Genomics, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Construction of a high-density, high-quality genetic map of cultivated lotus (Nelumbo nucifera) using next-generation sequencing
Published in
BMC Genomics, June 2016
DOI 10.1186/s12864-016-2781-4
Pubmed ID
Authors

Zhengwei Liu, Honglian Zhu, Yuping Liu, Jing Kuang, Kai Zhou, Fan Liang, Zhenhua Liu, Depeng Wang, Weidong Ke

Abstract

The sacred lotus (Nelumbo nucifera) is widely cultivated in China for its edible rhizomes and seeds. Traditional plant breeding methods have been used to breed cultivars with increased yields and quality of rhizomes and seeds with limited success. Currently, the available genetic maps and molecular markers in lotus are too limited to be useful for molecular genetics based breeding programs. However, the development of next-generation sequencing (NGS) technologies has enabled large-scale identification of single-nucleotide polymorphisms (SNPs) for genetic map construction. In this study, we constructed an SNP-based high-density genetic map for cultivated lotus using double digest restriction site-associated DNA sequencing (ddRADseq). An F2 population of 96 individuals was derived from a cross between the rhizome lotus cultivar 'Juwuba' (male parent) and the seed lotus cultivar 'Mantianxing' (female parent). Genomic DNAs from this population were digested with the restriction enzymes EcoRI and MspI and then sequenced. In total, 133.65 Gb of raw data containing 1,088,935,610 pair-end reads were obtained. The coverage of reads on a reference genome was 7.2 % for the female parent, 6.56 % for the male parent, and 1.46 % for F2 individuals. From these reads, 10,753 valid SNP markers were used for genetic map construction. Finally, 791 bin markers (so-segregated adjacent SNPs treated as a bin marker), consisting of 8,971 SNP markers, were sorted into 8 linkage groups (LGs) that spanned 581.3 cM, with an average marker interval of 0.74 cM. A total of 809 genome sequence scaffolds, covering about 565.9 cM of the wild sacred lotus genome, were anchored on the genetic map, accounting for 70.6 % of the genome assembly. This study reports the large-scale discovery of SNPs between cultivars of rhizome and seed lotus using a ddRADseq library combined with NGS. These SNPs have been used to construct the first high-density genetic map for cultivated lotus that can serve as a genomic reference and will facilitate genetic mapping of important traits in the parental cultivars.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 4%
Unknown 27 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 29%
Researcher 5 18%
Student > Master 4 14%
Student > Bachelor 2 7%
Lecturer 2 7%
Other 4 14%
Unknown 3 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 68%
Biochemistry, Genetics and Molecular Biology 4 14%
Social Sciences 1 4%
Unknown 4 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 September 2017.
All research outputs
#13,983,915
of 22,877,793 outputs
Outputs from BMC Genomics
#5,357
of 10,666 outputs
Outputs of similar age
#195,599
of 352,647 outputs
Outputs of similar age from BMC Genomics
#88
of 174 outputs
Altmetric has tracked 22,877,793 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,666 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,647 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 174 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.