↓ Skip to main content

Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish

Overview of attention for article published in Fluids and Barriers of the CNS, June 2016
Altmetric Badge

Mentioned by

twitter
3 X users

Readers on

mendeley
77 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish
Published in
Fluids and Barriers of the CNS, June 2016
DOI 10.1186/s12987-016-0036-z
Pubmed ID
Authors

Ryann M. Fame, Jessica T. Chang, Alex Hong, Nicole A. Aponte-Santiago, Hazel Sive

Abstract

Cerebrospinal fluid (CSF) contained within the brain ventricles contacts neuroepithelial progenitor cells during brain development. Dynamic properties of CSF movement may limit locally produced factors to specific regions of the developing brain. However, there is no study of in vivo CSF dynamics between ventricles in the embryonic brain. We address CSF movement using the zebrafish larva, during the major period of developmental neurogenesis. CSF movement was monitored at two stages of zebrafish development: early larva [pharyngula stage; 27-30 h post-fertilization (hpf)] and late larva (hatching period; 51-54 hpf) using photoactivatable Kaede protein to calculate average maximum CSF velocity between ventricles. Potential roles for heartbeat in early CSF movement were investigated using tnnt2a mutant fish (tnnt2a (-/-)) and chemical [2,3 butanedione monoxime (BDM)] treatment. Cilia motility was monitored at these stages using the Tg(βact:Arl13b-GFP) transgenic fish line. In wild-type early larva there is net CSF movement from the telencephalon to the combined diencephalic/mesencephalic superventricle. This movement directionality reverses at late larval stage. CSF moves directionally from diencephalic to rhombencephalic ventricles at both stages examined, with minimal movement from rhombencephalon to diencephalon. Directional movement is partially dependent on heartbeat, as indicated in assays of tnnt2a (-/-) fish and after BDM treatment. Brain cilia are immotile at the early larval stage. These data demonstrate directional movement of the embryonic CSF in the zebrafish model during the major period of developmental neurogenesis. A key conclusion is that CSF moves preferentially from the diencephalic into the rhombencephalic ventricle. In addition, the direction of CSF movement between telencephalic and diencephalic ventricles reverses between the early and late larval stages. CSF movement is partially dependent on heartbeat. At early larval stage, the absence of motile cilia indicates that cilia likely do not direct CSF movement. These data suggest that CSF components may be compartmentalized and could contribute to specialization of the early brain. In addition, CSF movement may also provide directional mechanical signaling.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 26%
Student > Master 12 16%
Researcher 11 14%
Student > Bachelor 8 10%
Student > Doctoral Student 3 4%
Other 9 12%
Unknown 14 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 25%
Biochemistry, Genetics and Molecular Biology 16 21%
Neuroscience 9 12%
Engineering 6 8%
Sports and Recreations 2 3%
Other 8 10%
Unknown 17 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 October 2022.
All research outputs
#19,313,431
of 24,589,002 outputs
Outputs from Fluids and Barriers of the CNS
#297
of 417 outputs
Outputs of similar age
#261,463
of 360,217 outputs
Outputs of similar age from Fluids and Barriers of the CNS
#4
of 4 outputs
Altmetric has tracked 24,589,002 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 417 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 360,217 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.