↓ Skip to main content

Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering

Overview of attention for article published in Microbial Cell Factories, June 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
1 X user
patent
3 patents

Citations

dimensions_citation
161 Dimensions

Readers on

mendeley
187 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering
Published in
Microbial Cell Factories, June 2016
DOI 10.1186/s12934-016-0509-4
Pubmed ID
Authors

Yan Chen, Wenhai Xiao, Ying Wang, Hong Liu, Xia Li, Yingjin Yuan

Abstract

Microbial production of lycopene, a commercially and medically important compound, has received increasing concern in recent years. Saccharomyces cerevisiae is regarded as a safer host for lycopene production than Escherichia coli. However, to date, the lycopene yield (mg/g DCW) in S. cerevisiae was lower than that in E. coli and did not facilitate downstream extraction process, which might be attributed to the incompatibility between host cell and heterologous pathway. Therefore, to achieve lycopene overproduction in S. cerevisiae, both host cell and heterologous pathway should be delicately engineered. In this study, lycopene biosynthesis pathway was constructed by integration of CrtE, CrtB and CrtI in S. cerevisiae CEN.PK2. When YPL062W, a distant genetic locus, was deleted, little acetate was accumulated and approximately 100 % increase in cytosolic acetyl-CoA pool was achieved relative to that in parental strain. Through screening CrtE, CrtB and CrtI from diverse species, an optimal carotenogenic enzyme combination was obtained, and CrtI from Blakeslea trispora (BtCrtI) was found to have excellent performance on lycopene production as well as lycopene proportion in carotenoid. Then, the expression level of BtCrtI was fine-tuned and the effect of cell mating types was also evaluated. Finally, potential distant genetic targets (YJL064W, ROX1, and DOS2) were deleted and a stress-responsive transcription factor INO2 was also up-regulated. Through the above modifications between host cell and carotenogenic pathway, lycopene yield was increased by approximately 22-fold (from 2.43 to 54.63 mg/g DCW). Eventually, in fed-batch fermentation, lycopene production reached 55.56 mg/g DCW, which is the highest reported yield in yeasts. Saccharomyces cerevisiae was engineered to produce lycopene in this study. Through combining host engineering (distant genetic loci and cell mating types) with pathway engineering (enzyme screening and gene fine-tuning), lycopene yield was stepwise improved by 22-fold as compared to the starting strain. The highest lycopene yield (55.56 mg/g DCW) in yeasts was achieved in 5-L bioreactors. This study provides a good reference of combinatorial engineering of host cell and heterologous pathway for microbial overproduction of pharmaceutical and chemical products.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 187 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 <1%
France 1 <1%
Unknown 185 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 27 14%
Student > Master 26 14%
Student > Ph. D. Student 25 13%
Student > Bachelor 16 9%
Student > Doctoral Student 7 4%
Other 28 15%
Unknown 58 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 55 29%
Agricultural and Biological Sciences 39 21%
Chemical Engineering 6 3%
Engineering 5 3%
Pharmacology, Toxicology and Pharmaceutical Science 4 2%
Other 15 8%
Unknown 63 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 June 2019.
All research outputs
#4,621,823
of 22,879,161 outputs
Outputs from Microbial Cell Factories
#256
of 1,604 outputs
Outputs of similar age
#82,341
of 353,105 outputs
Outputs of similar age from Microbial Cell Factories
#4
of 37 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,604 research outputs from this source. They receive a mean Attention Score of 4.4. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,105 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.