↓ Skip to main content

Simple surface functionalization of polymersomes using non-antibacterial peptide anchors

Overview of attention for article published in Journal of Nanobiotechnology, June 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Simple surface functionalization of polymersomes using non-antibacterial peptide anchors
Published in
Journal of Nanobiotechnology, June 2016
DOI 10.1186/s12951-016-0205-x
Pubmed ID
Authors

Ludwig Klermund, Sarah T. Poschenrieder, Kathrin Castiglione

Abstract

Hollow vesicles formed from block copolymers, so-called polymersomes, have been extensively studied in the last decade for their various applications in drug delivery, in diagnostics and as nanoreactors. The immobilization of proteins on the polymersomes' surface can aid in cell targeting, lead to functional biosensors or add an additional reaction space for multistep syntheses. In almost all surface functionalization strategies to date, a chemical pre-conjugation of the polymer with a reactive group or ligand and the functionalization of the protein are required. To avoid chemical pre-conjugation, we investigated the simple and quick functionalization of preformed poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) (PMOXA-PDMS-PMOXA) polymersomes through the spontaneous insertion of four hydrophobic, non-antibacterial peptide anchors into the membrane to display enhanced green fluorescent protein (eGFP) on the polymersomes' surface. Three of the four hydrophobic peptides, the transmembrane domains of a eukaryotic cytochrome b 5 , of the viral lysis protein L and of the yeast syntaxin VAM3 could be recombinantly expressed as soluble eGFP-fusion proteins and spontaneously inserted into the polymeric membrane. Characterization of the surface functionalization revealed that peptide insertion was linearly dependent on the protein concentration and possible at a broad temperature range of 4-42 °C. Up to 2320 ± 280 eGFP molecules were immobilized on a single polymersome, which is in agreement with the calculated maximum loading capacity. The peptide insertion was stable without disrupting membrane integrity as shown in calcein leakage experiments and the functionalized polymersomes remained stable for at least 6 weeks. The surface functionalization of polymersomes with hydrophilic proteins can be mediated by several peptide anchors in a spontaneous process at extremely mild insertion conditions and without the need of pre-conjugating polymers.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 32%
Researcher 6 15%
Student > Bachelor 6 15%
Student > Doctoral Student 4 10%
Other 1 2%
Other 2 5%
Unknown 9 22%
Readers by discipline Count As %
Chemistry 7 17%
Biochemistry, Genetics and Molecular Biology 5 12%
Engineering 5 12%
Agricultural and Biological Sciences 5 12%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 7 17%
Unknown 11 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 June 2016.
All research outputs
#20,334,427
of 22,879,161 outputs
Outputs from Journal of Nanobiotechnology
#1,227
of 1,423 outputs
Outputs of similar age
#305,296
of 352,770 outputs
Outputs of similar age from Journal of Nanobiotechnology
#15
of 16 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,423 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,770 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.