↓ Skip to main content

Acid Sphingomyelinase Promotes Endothelial Stress Response in Systemic Inflammation and Sepsis

Overview of attention for article published in Molecular Medicine, June 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Acid Sphingomyelinase Promotes Endothelial Stress Response in Systemic Inflammation and Sepsis
Published in
Molecular Medicine, June 2016
DOI 10.2119/molmed.2016.00140
Pubmed ID
Authors

Ha-Yeun Chung, Daniel C Hupe, Gordon P Otto, Marcel Sprenger, Alexander C Bunck, Michael J Dorer, Clemens L Bockmeyer, Hans-Peter Deigner, Markus H Gräler, Ralf A Claus

Abstract

The pathophysiology of sepsis involves activation of acid sphingomyelinase (SMPD1) with subsequent generation of the bioactive mediator ceramide. We herein evaluated the hypothesis that the enzyme exerts biological effects in endothelial stress response. Plasma-secreted sphingomyelinase activity, ceramide generation and lipid raft formation were measured in human microcirculatory endothelial cells (HMEC-1) stimulated with serum obtained from sepsis patients. Clustering of receptors relevant for signal transduction was studied by immuno staining. The role of SMPD1 for macrodomain formation was tested by pharmacological inhibition. To confirm the involvement of the stress enzyme, direct inhibitors (amino bisphosphonates) and specific downregulation of the gene was tested with respect to ADAMTS13 expression and cytotoxicity. Plasma activity and amount of SMPD1 were increased in septic patients dependent on clinical severity. Increased breakdown of sphingomyelin to ceramide in HMECs was observed following stimulation with serum from sepsis patients in vitro. Hydrolysis of sphingomyelin, clustering of receptor complexes, such as the CD95L/Fas-receptor, as well as formation of ceramide enriched macrodomains was abrogated using functional inhibitors (desipramine and NB6). Strikingly, the stimulation of HMECs with serum obtained from sepsis patients or mixture of proinflammatory cytokines resulted in cytotoxicity and ADAMTS13 downregulation which was abrogated using desipramine, amino bisphosphonates and genetic inhibitors. SMPD1 is involved in the dysregulation of ceramide metabolism in endothelial cells leading to macrodomain formation, cytotoxicity and downregulation of ADAMTS13 expression. Functional inhibitors, such as desipramine, are capable to improve endothelial stress response during sepsis and might be considered as a pharmacological treatment strategy to favor the outcome.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 18%
Student > Master 5 15%
Student > Ph. D. Student 4 12%
Student > Bachelor 2 6%
Lecturer 1 3%
Other 3 9%
Unknown 12 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 15%
Agricultural and Biological Sciences 5 15%
Medicine and Dentistry 5 15%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Computer Science 1 3%
Other 3 9%
Unknown 12 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 June 2023.
All research outputs
#3,362,276
of 24,037,100 outputs
Outputs from Molecular Medicine
#119
of 1,202 outputs
Outputs of similar age
#60,409
of 358,232 outputs
Outputs of similar age from Molecular Medicine
#4
of 22 outputs
Altmetric has tracked 24,037,100 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,202 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 358,232 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.