↓ Skip to main content

Creation of stable Pseudomonas aeruginosa promoter–reporter fusion mutants using linear plasmid DNA transformation

Overview of attention for article published in BMC Research Notes, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Creation of stable Pseudomonas aeruginosa promoter–reporter fusion mutants using linear plasmid DNA transformation
Published in
BMC Research Notes, June 2016
DOI 10.1186/s13104-016-2130-3
Pubmed ID
Authors

Ping Chen, Kai P. Leung

Abstract

Pseudomonas aeruginosa is an important opportunistic human pathogen that is commonly encountered clinically in different types of infections. Reporter-gene systems and construction of mutants defective in specific functions are useful tools for studying the cellular physiology and virulence of this organism. The common mutant construction process requires constructing target alleles into large size suicide vector(s) for transformations, and extra steps involved in resolving merodiploids. Here we describe a new approach using linearized plasmid transformation for creating a green fluorescent protein (GFP) reporter gene system to study promoter activities in P. aeruginosa. We successfully created promoter-reporter fusion plasmids for studying the promoter activity of virulence genes in P. aeruginosa. The promoter of exoenzyme S (a virulence factor) was used in preparation of these fusion plasmids. These fusion plasmids were linearized and used directly to transform P. aeruginosa. Stable P. aeruginosa chromosomally integrated promoter-reporter fusion mutants were obtained. We demonstrated that the promoter of Exoenzyme S gene was activated when P. aeruginosa was grown in a biofilm state, as evidenced by the expression of GFP in these biofilm cells. Direct transformation with linearized plasmid DNA provides another avenue to create P. aeruginosa mutants. This new approach eliminates the use of suicide vector(s) for creating P. aeruginosa mutants, and thus speeds up the process mutant construction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 14%
Student > Bachelor 5 12%
Student > Master 5 12%
Student > Ph. D. Student 5 12%
Student > Doctoral Student 3 7%
Other 5 12%
Unknown 13 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 31%
Agricultural and Biological Sciences 6 14%
Immunology and Microbiology 4 10%
Medicine and Dentistry 2 5%
Nursing and Health Professions 1 2%
Other 3 7%
Unknown 13 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 June 2016.
All research outputs
#14,856,117
of 22,879,161 outputs
Outputs from BMC Research Notes
#2,128
of 4,268 outputs
Outputs of similar age
#212,945
of 352,727 outputs
Outputs of similar age from BMC Research Notes
#47
of 85 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,268 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,727 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 85 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.