↓ Skip to main content

Antimicrobial resistance and virulence signatures of Listeria and Aeromonas species recovered from treated wastewater effluent and receiving surface water in Durban, South Africa

Overview of attention for article published in BMC Microbiology, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
120 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Antimicrobial resistance and virulence signatures of Listeria and Aeromonas species recovered from treated wastewater effluent and receiving surface water in Durban, South Africa
Published in
BMC Microbiology, October 2015
DOI 10.1186/s12866-015-0570-x
Pubmed ID
Authors

Ademola O. Olaniran, Sphephile B T Nzimande, Ndumiso G. Mkize

Abstract

Treated wastewater effluent has been found to contain high levels of contaminants, including disease-causing bacteria such as Listeria and Aeromonas species. The aim of this study was to evaluate the antimicrobial resistance and virulence signatures of Listeria and Aeromonas spp. recovered from treated effluents of two wastewater treatment plants and receiving rivers in Durban, South Africa. A total of 100 Aeromonas spp. and 78 Listeria spp. were positively identified based on biochemical tests and PCR detection of DNA region conserved in these genera. The antimicrobial resistance profiles of the isolates were determined using Kirby Bauer disc diffusion assay. The presence of important virulence genes were detected via PCR, while other virulence determinants; protease, gelatinase and haemolysin were detected using standard assays. Highest resistance was observed against penicillin, erythromycin and nalidixic acid, with all 78 (100 %) tested Listeria spp displaying resistance, followed by ampicillin (83.33 %), trimethoprim (67.95 %), nitrofurantoin (64.10 %) and cephalosporin (60.26 %). Among Aeromonas spp., the highest resistance (100 %) was observed against ampicillin, penicillin, vancomycin, clindamycin and fusidic acid, followed by cephalosporin (82 %), and erythromycin (58 %), with 56 % of the isolates found to be resistant to naladixic acid and trimethoprim. Among Listeria spp., 26.92 % were found to contain virulence genes, with 14.10, 5.12 and 21 % harbouring the actA, plcA and iap genes, respectively. Of the 100 tested Aeromonas spp., 52 % harboured the aerolysin (aer) virulence associated gene, while lipase (lip) virulence associated gene was also detected in 68 % of the tested Aeromonas spp. The presence of these organisms in effluents samples following conventional wastewater treatment is worrisome as this could lead to major environmental and human health problems. This emphasizes the need for constant evaluation of the wastewater treatment effluents to ensure compliance to set guidelines.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 120 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 <1%
Unknown 119 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 16 13%
Researcher 15 13%
Student > Ph. D. Student 15 13%
Student > Bachelor 12 10%
Student > Doctoral Student 7 6%
Other 20 17%
Unknown 35 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 17%
Immunology and Microbiology 13 11%
Biochemistry, Genetics and Molecular Biology 12 10%
Veterinary Science and Veterinary Medicine 8 7%
Environmental Science 7 6%
Other 18 15%
Unknown 42 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 June 2016.
All research outputs
#17,810,002
of 22,879,161 outputs
Outputs from BMC Microbiology
#2,010
of 3,195 outputs
Outputs of similar age
#191,345
of 283,807 outputs
Outputs of similar age from BMC Microbiology
#36
of 75 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,195 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,807 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 75 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.