↓ Skip to main content

Toxicity responses of Cu and Cd: the involvement of miRNAs and the transcription factor SPL7

Overview of attention for article published in BMC Plant Biology, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Toxicity responses of Cu and Cd: the involvement of miRNAs and the transcription factor SPL7
Published in
BMC Plant Biology, June 2016
DOI 10.1186/s12870-016-0830-4
Pubmed ID
Authors

Heidi Gielen, Tony Remans, Jaco Vangronsveld, Ann Cuypers

Abstract

MicroRNAs are important posttranscriptional regulators of gene expression playing a role in developmental processes as well as in stress responses, including metal stress responses. Despite the identification of several metal-responsive miRNAs, the regulation and the role of these miRNAs and their targets remain to be explored. In this study, miRNAs involved in the response to Cd and Cu excess in Arabidopsis thaliana are identified. In addition, the involvement of the transcription factor SPL7, namely the key regulator of Cu homeostasis, in these metal stress responses is demonstrated by the use of an spl7 knockout mutant. Furthermore, more insight is given in the Cd-induced Cu deficiency response through determining the effects of adding supplemental Cu to Cd-exposed plants. Thirteen miRNAs were identified in response to Cu and Cd excess in A. thaliana. Several of these miRNAs (miR397a, miR398b/c and miR857) were oppositely affected under Cu and Cd exposure. The induced expression of these miRNAs after Cd exposure was totally abolished in the spl7 mutant (SQUAMOSA promoter binding protein like7), indicating a major role for SPL7 in the Cd response. Plants exposed to Cd showed a higher Cu content in the roots, whereas the Cu content in the leaves of the spl7 mutant was reduced. Furthermore, the Cd-induced Cu deficiency response disappeared when supplemental Cu was added. Copper- and Cd-responsive miRNAs were identified and several of them are SPL7-dependently regulated. SPL7 seems to be a shared component between both the Cu toxicity and the Cd toxicity response, yet oppositely regulated, that is inactivated after Cu exposure and activated after Cd exposure. Since SPL7 is the key regulator of Cu homeostasis, and Cd affects the Cu homeostasis, we hypothesize that SPL7 is activated in response to Cd possibly due to a Cd-induced Cu deficiency. Since adding additional Cu to Cd-exposed plants resulted in the disappearance of the Cu deficiency response, Cd possibly provokes Cu deficiency, thereby activating SPL7 and inducing subsequently the Cu deficiency response.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 1%
Belgium 1 1%
Unknown 71 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 21%
Researcher 13 18%
Student > Master 9 12%
Student > Bachelor 7 10%
Student > Postgraduate 4 5%
Other 11 15%
Unknown 14 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 31 42%
Biochemistry, Genetics and Molecular Biology 17 23%
Environmental Science 3 4%
Engineering 2 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 1%
Other 4 5%
Unknown 15 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2017.
All research outputs
#14,856,117
of 22,880,230 outputs
Outputs from BMC Plant Biology
#1,279
of 3,264 outputs
Outputs of similar age
#212,501
of 351,572 outputs
Outputs of similar age from BMC Plant Biology
#23
of 52 outputs
Altmetric has tracked 22,880,230 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,264 research outputs from this source. They receive a mean Attention Score of 3.0. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 351,572 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.