↓ Skip to main content

Adult obese mice suffer from chronic secondary brain injury after mild TBI

Overview of attention for article published in Journal of Neuroinflammation, June 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Adult obese mice suffer from chronic secondary brain injury after mild TBI
Published in
Journal of Neuroinflammation, June 2016
DOI 10.1186/s12974-016-0641-4
Pubmed ID
Authors

Matthew Sherman, Ming-Mei Liu, Shari Birnbaum, Steven E. Wolf, Joseph P. Minei, Joshua W. Gatson

Abstract

A traumatic brain injury (TBI) event is a devastating injury to the brain that may result in heightened inflammation, neurodegeneration, and subsequent cognitive and mood deficits. TBI victims with co-morbidities such as heart disease, diabetes, or obesity may be more vulnerable to the secondary brain injury that follows the initial insult. Compared to lean individuals, obese subjects tend to have worse clinical outcomes and higher mortality rates after trauma. To elucidate whether obesity predisposes individuals to worse outcomes after TBI, we subjected adult lean and obese male/female mice to a mild TBI. The injury was administered using a controlled skull impact (CSI) device. Lean or obese 6-month-old C57 BL/6 mice were subjected once to a mild TBI. Additionally, at day 30 after injury, both the lean and obese mice were tested for increased anxiety using the open field test. At day 30 after TBI, compared to the lean mice, we found heightened microglial (MG) activation in the cerebral cortex, corpus callosum, and hypothalamus. Another compelling finding was that, compared to the non-injured obese male control mice, the obese TBI mice had a decrease in the rate of weight gain and serum corticosterone levels at day 30 after injury. Additionally, the injured obese mice displayed higher levels of anxiety as determined by a significant decrease in time spent in the non-peripheral zones in the open field test. In contrast to the obese males, the obese female mice did not exhibit increases in the number of active MG in the brain, changes in weight gain/corticosterone levels, or increased anxiety at day 30 after TBI. The data presented here suggests that obese mice have worse outcomes compared to lean mice after mild TBI. Also, the obese males have worse outcomes than the injured female mice. This data may explain the sequela of chronic secondary brain injury in obese adults after a single mild TBI. Also, this report may help shape how the overweight/obese populations are monitored over the days and months following a TBI.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 18%
Student > Bachelor 6 10%
Student > Ph. D. Student 6 10%
Researcher 5 8%
Other 5 8%
Other 10 16%
Unknown 19 31%
Readers by discipline Count As %
Neuroscience 17 27%
Nursing and Health Professions 6 10%
Medicine and Dentistry 3 5%
Agricultural and Biological Sciences 3 5%
Engineering 2 3%
Other 7 11%
Unknown 24 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 July 2016.
All research outputs
#19,944,091
of 25,373,627 outputs
Outputs from Journal of Neuroinflammation
#2,245
of 2,951 outputs
Outputs of similar age
#267,898
of 366,930 outputs
Outputs of similar age from Journal of Neuroinflammation
#50
of 63 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,951 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.7. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 366,930 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.