↓ Skip to main content

Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond

Overview of attention for article published in Microbial Cell Factories, October 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

twitter
1 X user
patent
3 patents

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond
Published in
Microbial Cell Factories, October 2015
DOI 10.1186/s12934-015-0340-3
Pubmed ID
Authors

Jinny L. Liu, Ellen R. Goldman, Dan Zabetakis, Scott A. Walper, Kendrick B. Turner, Lisa C. Shriver-Lake, George P. Anderson

Abstract

Single domain antibodies derived from the variable region of the unique heavy chain antibodies found in camelids yield high affinity and regenerable recognition elements. Adding an additional disulfide bond that bridges framework regions is a proven method to increase their melting temperature, however often at the expense of protein production. To fulfill their full potential it is essential to achieve robust protein production of these stable binding elements. In this work, we tested the hypothesis that decreasing the isoelectric point of single domain antibody extra disulfide bond mutants whose production fell due to the incorporation of the extra disulfide bond would lead to recovery of the protein yield, while maintaining the favorable melting temperature and affinity. Introduction of negative charges into a disulfide bond mutant of a single domain antibody specific for the L1 antigen of the vaccinia virus led to approximately 3.5-fold increase of protein production to 14 mg/L, while affinity and melting temperature was maintained. In addition, refolding following heat denaturation improved from 15 to 70 %. It also maintained nearly 100 % of its binding function after heating to 85 °C for an hour at 1 mg/mL. Disappointingly, the replacement of neutral or positively charged amino acids with negatively charged ones to lower the isoelectric point of two anti-toxin single domain antibodies stabilized with a second disulfide bond yielded only slight increases in protein production. Nonetheless, for one of these binders the charge change itself stabilized the structure equivalent to disulfide bond addition, thus providing an alternative route to stabilization which is not accompanied by loss in production. The ability to produce high affinity, stable single domain antibodies is critical for their utility. While the addition of a second disulfide bond is a proven method for enhancing stability of single domain antibodies, it frequently comes at the cost of reduced yields. While decreasing the isoelectric point of double disulfide mutants of single domain antibodies may improve protein production, charge addition appears to consistently improve refolding and some charge changes can also improve thermal stability, thus providing a number of benefits making the examination of such mutations worth consideration.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 22%
Student > Ph. D. Student 13 22%
Student > Doctoral Student 4 7%
Student > Master 4 7%
Other 3 5%
Other 5 9%
Unknown 16 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 22%
Biochemistry, Genetics and Molecular Biology 13 22%
Immunology and Microbiology 4 7%
Chemistry 2 3%
Engineering 2 3%
Other 6 10%
Unknown 18 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2022.
All research outputs
#4,616,531
of 23,202,641 outputs
Outputs from Microbial Cell Factories
#252
of 1,625 outputs
Outputs of similar age
#61,364
of 279,544 outputs
Outputs of similar age from Microbial Cell Factories
#5
of 47 outputs
Altmetric has tracked 23,202,641 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,625 research outputs from this source. They receive a mean Attention Score of 4.4. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,544 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.