↓ Skip to main content

Avidity characterization of genetically engineered T-cells with novel and established approaches

Overview of attention for article published in BMC Immunology, July 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

patent
1 patent

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Avidity characterization of genetically engineered T-cells with novel and established approaches
Published in
BMC Immunology, July 2016
DOI 10.1186/s12865-016-0162-z
Pubmed ID
Authors

Victoria Hillerdal, Vanessa F. Boura, Hanna Björkelund, Karl Andersson, Magnus Essand

Abstract

Adoptive transfer of genetically engineered autologous T-cells is becoming a successful therapy for cancer. The avidity of the engineered T-cells is of crucial importance for therapy success. We have in the past cloned a T-cell receptor (TCR) that recognizes an HLA-A2 (MHC class I)-restricted peptide from the prostate and breast cancer- associated antigen TARP. Herein we perform a side-by-side comparison of the TARP-specific TCR (TARP-TCR) with a newly cloned TCR specific for an HLA-A2-restricted peptide from the cytomegalovirus (CMV) pp65 antigen. Both CD8(+) T-cells and CD4(+) T-cells transduced with the HLA-A2-restricted TARP-TCR could readily be detected by multimer analysis, indicating that the binding is rather strong, since binding occured also without the CD8 co-receptor of HLA-A2. Not surprisingly, the TARP-TCR, which is directed against a self-antigen, had weaker binding to the HLA-A2/peptide complex than the CMV pp65-specific TCR (pp65-TCR), which is directed against a viral epitope. Higher peptide concentrations were needed to achieve efficient cytokine release and killing of target cells when the TARP-TCR was used. We further introduce the LigandTracer technology to study cell-cell interactions in real time by evaluating the interaction between TCR-engineered T-cells and peptide-pulsed cancer cells. We were able to successfully detect TCR-engineered T-cell binding kinetics to the target cells. We also used the xCELLigence technology to analyzed cell growth of target cells to assess the killing potency of the TCR-engineered T-cells. T-cells transduced with the pp65 - TCR exhibited more pronounced cytotoxicity, being able to kill their targets at both lower effector to target ratios and lower peptide concentrations. The combination of binding assay with functional assays yields data suggesting that TARP-TCR-engineered T-cells bind to their target, but need more antigen stimulation compared to the pp65-TCR to achieve full effector response. Nonetheless, we believe that the TARP-TCR is an attractive candidate for immunotherapy development for prostate and/or breast cancer.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 37 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 21%
Student > Ph. D. Student 6 16%
Student > Master 5 13%
Student > Doctoral Student 3 8%
Student > Postgraduate 3 8%
Other 4 11%
Unknown 9 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 24%
Medicine and Dentistry 7 18%
Immunology and Microbiology 3 8%
Biochemistry, Genetics and Molecular Biology 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 4 11%
Unknown 11 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2019.
All research outputs
#7,500,672
of 23,577,654 outputs
Outputs from BMC Immunology
#136
of 592 outputs
Outputs of similar age
#122,489
of 356,920 outputs
Outputs of similar age from BMC Immunology
#3
of 15 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 592 research outputs from this source. They receive a mean Attention Score of 3.8. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 356,920 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.